Transfusion medicine: looking to the future

Lawrence T Goodnough, Aryeh Shander, Mark E Brecher

The evolution of transfusion medicine into a clinically oriented discipline emphasizing patient care has been accompanied by challenges that need to be faced as specialists look to the future. Emerging issues that affect blood safety and blood supply, such as pathogen inactivation and more stringent donor screening questions, bring new pressures on the availability of an affordable blood supply. Iniminent alternatives for management of anemia, such as oxygen carriers, hold great promise but, if available, will require close oversight. With current estimates of HIV or hepatitis C viral (HCV) transmission approaching one in 200 000 units transfused, keeping to a minimum bacterial contamination of platelet products (one in 2000) and errors in transfusion, with its estimated one in 800 000 mortality rate, assume great urgency. Finally, serious difficulties in blood safety and availability for poor, developing countries require innovative strategies and commitment of resources.

Transfusion medicine has evolved from a mostly laboratory-centred service with a focus on the serological aspects of blood, into a clinically oriented discipline that emphasises patient care. This evolution has taken place over the past 20 years, mostly because of the recognition that HIV and hepatitis C virus (HCV) are transmissible by blood. The resultant emphases on blood safety, appropriate use of blood components, informed consent for blood transfusion, and alternatives to blood have led to substantial advances in reduction of potential risks and complications associated with blood transfusion. Nevertheless, this evolution has been accompanied by challenges for which specialists in transfusion medicine and their clinical colleagues must chart an uncertain course into the future. Here, we overview selected issues, and discuss how their resolution could be turned into opportunities for the future.

Blood centres
Blood availability
Sporadic shortages of blood and blood products (eg, packed red cells, platelet products, albumin, intravenous immunoglobulin, and clotting factor concentrates) are potentially life-threatening occurrences. Such shortages have been attributed to various causes, including disruptions in production, increasingly strict criteria for donor deferral, product recalls, increase in use (including off-label), and possibly supply disruptions because of stockpiling or other market issues. Additionally, the ability of blood centres to supply blood in response to acute crises has assumed particular importance after the Sept 11, 2001, terrorist attacks in the USA.12

In an attempt to anticipate and manage such shortages better, various organisations and government agencies have started to track production and use of such products. For example, in the UK, the Blood Stocks Management Scheme was established in 1997 as a collaborative venture between the National Blood Service and the hospital sector to understand and improve management of supplies.2 This system uses web-based submission of data and instant graphic feedback and was implemented in April, 2001. As of February, 2002, 167 (54%) of hospitals served by the National Blood Service were tracking 1·44 million red cell units/year (65% of National Blood Service issues).1 In the USA, the Department of Health and Human Services began in August, 2001, to monitor the ability of the US blood supply to meet demand.4 This system monitors three sentinel community blood services and 26 sentinel hospital transfusion services, which account for about 10% of the US inventory of red blood cells and platelets.

A comprehensive national survey of blood collections and blood transfusions in the USA has been done by the Center for Blood Research from 1982 to 1994, and subsequently by the National Blood Data Resource Center. Blood transfusion and collection activities peaked in 1986, and then declined.5 However, blood transfusions and collections increased from 8·0% in 1997 to 10·2% in 1999; Quikount surveys from the National Blood Data Resource Center of US blood centres (80-4% response rate) in 2000 estimated that 12·54 million allogeneic blood units were transfused—a yearly increase of 4·5% from 1999 (M Sullivan, National Blood Data Resource Center, personal communication).

Search strategy and selection criteria
We searched the National Library of Medicine (NLM) database by the NLM Gateway web site for the past 5 years, and from review of the authors, titles, abstract, and source location, articles in full were selected for further examination. This search was done within The Lancet’s guidelines for articles in its Seminar format. Medline searches were done with Ovid Technologies, Version 4.4.0, through the University of North Carolina Health Sciences Library. We searched the internet using the Google search engine. Specific searches were done at the http://www.fda.gov/cber/index.html, http://www.cdc.gov/ and http://www.who.int/home-page/sites. References were selected according to the authors’ identification of relevant topics for the review.

Lancet 2003; 361: 161-69

Departments of Medicine, and Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA (L T Goodnough MO); Department of Anesthesiology, Mount Sinai School of Medicine, New York, and Department of Anesthesiology, Critical Care and Hyperbaric Medicine, Englewood Medical Center, Englewood, NJ (A Shander MO); Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC (M E Brecher MO)

Correspondence to: Dr Lawrence T Goodnough, Washington University School of Medicine, Division of Laboratory Medicine, Box 8118, 660 S Euclid Avenue, St Louis, MO 63110, USA (e-mail: goodnough@labmed.wustl.edu)
Allogeneic blood collections in 2000 were 13·37 million units—a surplus of 6·2%. This fractional surplus has diminished from the 7·4% of untransfused units in 1997 because of increased demand for blood and loss of donors. Current estimates, modified by events of Sept 11, 2001, predict that US blood collections in 2001 surpassed 15·0 million units.

Faced with future prospects of acute demand for blood supplies or transient decreases in donor collection, blood centres and transfusion services have begun to reexamine their approach to inventory reserves. In the USA, there is much heterogeneity in how reserves are maintained. Within the American Red Cross (which supplies about half of all blood products in the USA), a 3–4 day supply of red blood cell products is typical. Some independent centres allow for higher reserves. For example, the Oklahoma Blood Institute typically has a 14–17 day supply of red cell product. Use of frozen red cells as a hedge against inventory shortages has generally not been practical because the shelf-life of thawed units is only 24 h. However, an automated, functionally closed system (ACP 215, Haemonetics, Braintree, MA, USA) for the glycerolisation and deglycerolisation processes has now become available and allows for a 2-week post-thaw shelf life. With the availability of such a system, the Oklahoma Blood Institute plans to increase its available red cell inventory to 21–24 days, with a rotating frozen red cell reserve of 2000 units. Similarly, the Yale-New Haven Hospital transfusion service plans to freeze 200 units of red cells with this new system to provide them with a 3-day supply of blood products for emergencies.

Because of the time needed for blood processing and testing, it is the blood donated before a disaster that is transfused for lives placed at risk. It is now apparent that after disasters (human or natural) in the short-term, on-hand blood supplies are adequate and can be rapidly mobilised over great distances. The wave of donations after the Sept 11, 2001 attack overwhelmed the donor system in the USA, and few of the new donors have become regular donors. The challenge is to successfully recruit and maintain an adequate blood supply before the blood is needed, not after.

Blood safety

Blood centres have now implemented nucleic acid testing of minipools (16–24 donation samples/pool) from blood donations to reduce HIV and HCV transmissions during the infectious window period (before serological conversion). Current estimates of the risk per unit of blood in the post-nucleic acid testing era are 1 in 1×10^6 to 2×10^7 for HIV and 1 in 8×10^4 to 1×10^5 for hepatitis C virus. Figure 1 shows the changes in risk of transfusion-related transmission of HIV, hepatitis C, and hepatitis B in the USA as a result of the various strategies implemented. In the USA since 1999, over 25 million blood donations have been screened. To date, three cases of an apparent HIV transmission by a unit negative by both minipool nucleic acid testing and HIV serology (antibodies against HIV and antigens to HIV p24) have taken place, and one documented case of apparent hepatitis C transmission by a unit negative by both minipool nucleic acid testing and hepatitis C serology has been reported from Germany. These cases suggest that adoption of single donor nucleic acid testing will be likely.

At present, the greatest risk of transfusion-transmitted disease is bacterial contamination of platelets. Unlike viruses, bacteria can proliferate from low concentrations (<1 colony-forming units/mL) at the time of collection to very high concentrations ($>1\times10^9$ CFU/mL) during the liquid storage period of blood components. Since platelets are stored for up to 5 days at 20–24°C, they constitute an excellent growth medium for bacteria. Culture surveillance suggests that bacterial contamination of platelet concentrates and apheresis platelets occurs in about 1 in every 2000 units.

Although the true prevalence of severe episodes of transfusion-associated bacterial sepsis is not known, it is estimated to occur with a quarter to a sixth of contaminated transfusions. With
4 million (1 million apheresis platelets and 3 million platelet concentrates) platelet units transfused yearly in the USA alone, it would be expected that 2000 to 4000 bacterially contaminated units would be transfused and be associated with 333 to 1000 cases of severe and possibly fatal sepsis. Pooled platelet concentrates have a higher risk than apheresis platelets (a function of the number of units pooled, reflecting the increased donor exposure and number of phlebotomies required to obtain the products).

Recent reports from Europe and North America have advocated use of automated liquid media culture systems for testing of platelets to reduce the risk of bacterial contamination. Culturing of platelets is mandatory in Belgium (Flemish Red Cross) and the Netherlands. Although not mandatory, platelets are also cultured in estimates of blood donation, seroprevalence, screening was done with products derived from apheresis available for mass screening to detect asymptomatic cases of transfusion-associated Chagas disease (from one organ donor) in the USA and Canada have been reported. Although donor screening for antibodies is important in endemic conditions in Latin America (table), there is no direct evidence to suggest that introduction of routine donor screening for antibodies to this organism in all donors would measurably improve the safety of the USA blood supply. An example of this technology is uncertain. Donor referral criteria to deal with the potential contribution of carriers of Babesia species is not done. Deferral policies for selected diseases are being re-evaluated. The US Food and Drug Administration (FDA) revised deferral criteria for malaria risk in 1994,

Another promising approach is pathogen inactivation (eg, psoralens with ultraviolet irradiation), with the potential to eliminate viral and bacterial contaminants in platelets. However, these techniques have difficulty inactivating spore-forming bacteria (eg, Bacillus spp.).

This occurrence was seen in the US clinical trial with apheresis platelets, with lower post-transfusion corrected platelet recoveries and increased platelet transfusion requirements for maintenance of haemostasis, when compared with untreated platelets. Additionally, potential concerns about mutagenicity and teratogenicity of such compounds, along with costs and limited availability (for example, the pivotal US phase-3 trial for platelet products was done with products derived from apheresis technology from one vendor) leave the eventual role of this technology uncertain.

Donor screening

Donor-deferral questions remain important complementary methods for increasing transfusion safety, especially for diseases for which routine laboratory testing is not done. Deferral policies for selected diseases are being re-evaluated. The US Food and Drug Administration (FDA) revised deferral criteria for malaria risk in 1994, but another revision is being considered; 103 cases of transfusion-transmitted disease were reported to the US Centers for Disease Control from 1958 through 1998, with an estimated occurrence of 0.25 per million units transfused. Two-thirds of these diseases arose in donors who should have been excluded under current screening criteria, but the remaining third were from donors whose last travel exceeded the time limits (a minimum of 3 years for immigrants or residents from endemic regions) in the FDA's guidelines.

Transfusion-transmitted malaria is similarly a potential infectious threat in Europe.

Chagas disease (Trypanosoma cruzi) is endemic in many parts of Central and South America. Transfusion-transmitted Chagas disease is a major concern because T cruzi establishes a chronic, asymptomatic carrier state in most infected persons (table). Donor history screening for risk factors associated with T cruzi infection have poor specificity; in one study, 39-5% of donors at a Los Angeles hospital were judged to be at risk of T cruzi infection, and of these, one in 500 were confirmed antibody positive. To date, seven cases of transfusion-transmitted and three cases of transplant-associated Chagas disease (from one organ donor) in the USA and Canada have been reported. Although donor screening for antibodies is important in endemic conditions in Latin America (table), there is no direct evidence to suggest that introduction of routine donor screening for antibodies to this organism in all donors would measurably improve the safety of the USA blood supply. A pilot programme to screen and test blood donors for T cruzi infection is underway in Canada.

Transfusion-associated babesioses is another example of a transmissible zoonotic disease. Red cells and platelets prepared from asymptomatic donors have been implicated in more than 30 transfusion-transmitted cases. Asplenic, elderly, or severely immunocompromised patients are at the greatest risk of developing haemolytic anaemia, coagulopathy, and renal failure. At present, no test is available for mass screening to detect asymptomatic carriers of Babesia species.

Donor referral criteria to deal with the potential problems of Creutzfeldt-Jakob disease (CJD) and variant CJD (vCJD) were implemented in 1987. Although CJD has been transmitted from human to human by transplantation of dura matter or cornea, injection of pituitary growth hormone, or reuse of electroencephalograph electrodes, no cases of transmission by blood transfusion have been reported. Results of newer epidemiological studies confirm earlier studies that failed to show a link between transfusion and transmission of CJD. Despite concerns about potential transmission of circulating prions, there is an emerging consensus that CJD is rarely, if ever, transmitted by blood transfusion. Strategies implemented such as donor deferral schemes, universal leucoreduction, etc, are therefore considered precautionary.

Deferral of donors who have spent longer than 6 months in the UK from 1980 through 1996 was implemented in the USA in April, 2000, in a pre-emptive effort to keep the potential risk of vCJD to a minimum while avoiding disruption of the blood supply. As of October, 2002, more than 137 patients, mostly in the UK (128), but also six patients in France, and one in Italy have been diagnosed with vCJD. As a further measure to reduce the potential risk of vCJD by transfusion, new donor deferrals were implemented in the USA in October, 2002: cumulative time spent from 1980 to present in the UK longer than 3 months, in Europe longer than 5 years.

Estimates of blood donation, seroprevalence, screening coverage, and number of potential cases for Trypanosoma cruzi in Latin America (1997)

<table>
<thead>
<tr>
<th>Country</th>
<th>Number of blood donations</th>
<th>Seroprevalence in blood donors (%)</th>
<th>Screening coverage (%)</th>
<th>Potential cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costa Rica</td>
<td>58 436</td>
<td>25-77</td>
<td>6-9%</td>
<td>487</td>
</tr>
<tr>
<td>Ecuador</td>
<td>110 619</td>
<td>1-3%</td>
<td>72-3%</td>
<td>9</td>
</tr>
<tr>
<td>El Salvador</td>
<td>34 091</td>
<td>19-0%</td>
<td>100-0%</td>
<td>0</td>
</tr>
<tr>
<td>Honduras</td>
<td>27 983</td>
<td>11-5%</td>
<td>99-0%</td>
<td>1</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>46 539</td>
<td>3-9%</td>
<td>62-1%</td>
<td>21</td>
</tr>
<tr>
<td>Panama</td>
<td>42 342</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Paraguay</td>
<td>39 904</td>
<td>37-7%</td>
<td>100-0%</td>
<td>0</td>
</tr>
<tr>
<td>Peru</td>
<td>203 890</td>
<td>2-0%</td>
<td>60-0%</td>
<td>36</td>
</tr>
<tr>
<td>Uruguay</td>
<td>115 460</td>
<td>6-5%</td>
<td>100-0%</td>
<td>0</td>
</tr>
<tr>
<td>Venezuela</td>
<td>262 295</td>
<td>7-8%</td>
<td>100-0%</td>
<td>0</td>
</tr>
</tbody>
</table>

Data are from reference 37. NA=not available.
or on a US military base in Europe longer than 6 months. These criteria are estimated to reduce by 90% the total donor person-days of exposure to the putative agent of vCJD, with an estimated loss of about 5% of the US donor pool. The effect of these enhanced donor-screening measures is expected to be most severe in the metropolitan New York City region, which in the past has derived about 25% of its blood inventory via importation from the European Union.

Transfusion services
Errors in transfusion medicine

Errors are inevitable in any process, and mistransfusion resulting in death has been recognised for half a century.44 The mistransfusion rate (blood transfused to other than the intended recipient) is about one in 14 000 units in the USA45 and one in 18 000 in the UK.46 About half the errors occur in the clinical arena (incorrect identification of the recipient to the blood unit, phlebotomy errors, failure to recognise a transfusion reaction), and about 30% in the laboratory.47 A similar error rate (one in 17 000) has been identified for autologous blood units in Canada.48 One in 33 000 units are ABO-incompatible because of error, half of those are associated with a transfusion reaction, and about 10% are fatal.49 The frequency of death due to ABO-error is one per 800 000 blood units,50 compared with about one per 2 000 000 transfusions for transmission of HIV or hepatitis C.46

The current data probably underestimate the magnitude of non-infectious serious hazards of transfusion, since they are derived from passive haemovigilance reporting systems. In the USA, only fatal transfusion reactions have been required to be reported to the FDA since 1975. Nevertheless, the FDA reported transfusion-related death rate was more than twice that due to all infectious hazards combined, and the UK surveillance system reported an adverse event rate attributed to mistransfusion that was 10 times higher than the rate attributed to infectious-disease transmission.49

A system of voluntary, confidential, non-punitive reporting is believed to be an important approach to improving transfusion safety, similar to a quality improvement system for safety existent in the airline industry.51 A medical event reporting system (MERS) for transfusion medicine now being piloted in several locations.52 As well as haemovigilance schemes in the UK and in France, the MERS strategy implements an internal tracking system to identify and investigate errors (sentinel events, such as mistransfusions that result in haemolysis or death) and precursor events (near misses, such as phlebotomy sample errors) facilitating causal analysis so that action can be taken to prevent recurrence.

Additionally, because 61% of errors originate in clinical, patient-related settings,53 processes to ensure identification of patients with blood samples and blood units need to be considered as an adjunct to existing policies and procedures for administration of blood. These include blood bag locking devices54 and bar codes for patient and blood unit identification.55 Finally, a national voluntary, confidential, and non-punitive reporting system developed in partnership with regulatory agencies should be developed in parallel with local, operational systems such as medical event reporting systems for transfusion medicine.

Undertransfusion
Although much attention has been paid to the risks and complications associated with blood transfusion, much less is known about the benefit of blood transfusion, or conversely, the risks associated with (untreated) anaemia.56 The estimated risks of a blood transfusion are quantifiable and can be communicated to patients, but the risks of anaemia (in the absence of a blood transfusion) are poorly understood and cannot be accurately conveyed.

Anaemia has traditionally been regarded as an abnormal laboratory value, rather than as a serious disorder associated with, or probably the cause of, adverse clinical outcomes. By contrast with treatment algorithms or recommendations that have been developed for other disorders such as hypercholesterolemia or hypertension, guidelines for management of anaemia have been developed for only a few patients. The relation between anaemia and morbidity and mortality57-59 and mortality60-62 has been established best in patients with chronic kidney disease, leading to development of guidelines that these patients be maintained at haemoglobin concentrations between 110 g/L and 120 g/L.60

Information about the effect of anaemia on mortality is becoming increasingly apparent in patients in other clinical settings. A growing body of evidence suggests that anaemia affects the outlook in patients who have congestive heart failure or who have ischaemic heart disease. Two large observational studies63,64 noted an association between haemoglobin concentrations of 95-100 g/L and increased mortality in patients with cardiovascular disease, suggesting that such patients did not tolerate anaemia as well as those without known cardiovascular disease.

Investigators of a randomised trial in patients with moderate to severe congestive heart failure (New York Heart Association class III to IV) assessed whether treatment of anaemia affected clinical outcomes. Over 8 months, haemoglobin concentrations in the treatment cohort increased from 103 g/L to 129 g/L, with improved left ventricular ejection fractions, reduction in diuretic therapy dose, and reduction in hospital days compared with controls. 25% of the control group died during the study interval, compared with none in the treatment group.

Results of a retrospective observational analysis of 78 974 elderly patients admitted with acute myocardial infarction in the USA showed that in those with admission packed-cell volumes of less than 33%, blood transfusions were associated with significantly lower 30-day mortality. In the absence of prospective data or other data to the contrary, many lives could be saved when patients who present with acute myocardial infarction are maintained at packed-cell volumes of greater than 33%.65 For the first time, data are emerging that undertransfusion can lead to adverse outcomes.66,67

Guidelines for management of anaemia need to be developed in several clinical settings. The request for applications by the US National Institutes of Health to establish a clinical trials network in transfusion medicine

Panel 1: Examples of biotechnology products in transfusion medicine

<table>
<thead>
<tr>
<th>Erythropoiesis stimulants</th>
<th>Haemostasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erythropoietin</td>
<td>Recombinant factor VII</td>
</tr>
<tr>
<td>New erythropoietin stimulating factor</td>
<td>Recombinant factor VIII</td>
</tr>
<tr>
<td>Artificial oxygen carriers</td>
<td>Anticoagulants</td>
</tr>
<tr>
<td>Haemoglobin solutions</td>
<td>Antithrombin III</td>
</tr>
<tr>
<td>Perfluorocarbons</td>
<td>Activated protein C</td>
</tr>
</tbody>
</table>
erythropoietin stimulating factor), which has a longer half-disappearance time. Recombinant factor VIIa is now approved for patients with haemophilia who have inhibitors,73 but there are also ongoing clinical trials of this haemostatic agent in patients without pre-existing coagulopathy in perioperative haemorrhage, in those with thrombocytopenia after peripheral stem cell transplantation, in those undergoing liver transplantation, and in trauma patients. The ability of factor VIIa to activate factor X directly on the platelet membrane surface and restrict its activity to localised regions of tissue factor makes this product potentially useful in patients with substantial haemorrhage, with or without the presence of a coagulopathy.

Artificial oxygen carriers

Progress in development of artificial oxygen carriers has accelerated.74,75 Potential advantages for cell-free haemoglobin solutions and perfluorocarbon emulsions (as synthetic oxygen carriers) are listed in panel 2. Possible disadvantages of such products include interference with interpretation of some laboratory tests,76 and their short time in circulation (24–48 h).77 One potential difficulty associated with haemoglobin solutions is vasoconstriction, a consequence of their ability to bind nitric oxide.78 The nitric oxide binding properties of haemoglobin are thought to be responsible for the gastrointestinal discomfort observed in clinical trials of some products.75

The vasoconstrictive effect could also be explained by autoregulation, since small molecules, such as haemoglobin solutions, overdeliver oxygen to vessel walls.79 Results of one study69 assessing oxygen delivery after administration of clinically relevant doses of a haemoglobin solution to anesthetised surgical patients showed that the ability of the haemoglobin-based oxygen carrier to increase oxygen delivery was limited by its vasoactivity. In another prospective, randomised trial,80

Panel 2: Potential characteristics of artificial oxygen carriers

Advantages
- Stroma-free
- Not antigenic
- Oxygen unloading devoid of 2,3-diphosphoglycerate effect
- P_{50} about 20 mm Hg (normal haemoglobin P_{50} 27 mm Hg)
- Pathogen inactivation
- Size about 1 µm
- Possibility of unlimited availability
- Extended shelf life >2 years
- High oncotic properties
- Altered oxygen affinity and unloading characteristics (bovine)

Limitations
- Short intravascular life 1–2 h
- Possible renal toxic effects
- Negative inotropic effect
- Possible pulmonary and systemic hypertension
- Possible immune suppression
- Possible anaphylaxis
- Limited resuscitation ability limited to haemoglobin 50–70 g/L equivalent
- Interference in some laboratory determinations

is an opportunity for clinical studies to answer these and other important questions.

Emerging technologies

More and more biotechnology products are becoming available as alternatives to blood transfusion,12 some of which are listed in panel 1. Stimulants of red blood cell production include recombinant human erythropoietin and an altered erythropoietin molecule (new erythropoietin stimulating factor), which has a longer half-disappearance time. Recombinant factor VIIa is now approved for patients with haemophilia who have inhibitors,73 but there are also ongoing clinical trials of this haemostatic agent in patients without pre-existing coagulopathy in perioperative haemorrhage, in those with thrombocytopenia after peripheral stem cell transplantation, in those undergoing liver transplantation, and in trauma patients. The ability of factor VIIa to activate factor X directly on the platelet membrane surface and restrict its activity to localised regions of tissue factor makes this product potentially useful in patients with substantial haemorrhage, with or without the presence of a coagulopathy.

Panel 3: Current artificial oxygen carriers in clinical trials

<table>
<thead>
<tr>
<th>Compound</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perflubron (perfluoroctyl bromide), Oxygent, Alliance Pharmaceuticals, San Diego, CA</td>
<td>60% emulsion of perfluorocarbon has now completed one phase 3 evaluation in Europe,63 USA, and Canada. Due to unexplained results possibly related to clinical trial design flaws, the cardiac and non-cardiac transfusion avoidance studies in the USA were terminated early in 2001. Negative outcomes in phase 2 and clinical trials caused research to be terminated in 1999.</td>
</tr>
<tr>
<td>DCLHB-HemAssist, Baxter Healthcare, Roundtree, IL</td>
<td>Hemopure has a long storage capability at room temperature. Oxygen delivery is three times greater than allogeneic blood because of better oxygen affinity. Applications include trauma and military settings along with surgical and acute needs.</td>
</tr>
<tr>
<td>Glutaraldehyde polymerised bovine haemoglobin, Hemopure, Biopure Corp, Boston, MA</td>
<td>Closest to human blood properties, Polyheme can be administered in large quantities (up to 5000 mL). This product is intended to be used in trauma patients. Clinical vasoconstriction has not been reported. Early problems with oxygen yield and production were observed. Purification was also a problem with Escherichia coli, but now is not. Further work on improving oxygen yield is underway with additional recombinants.</td>
</tr>
<tr>
<td>Polyoxyethylene glycol conjugated bovine haemoglobin, Enzon, Piscataway, NJ</td>
<td>Controlled clinical trials in cardiac surgery have shown reduced exposure to allogeneic transfusion with few side-effects and no negative effect on mortality. Closest to human blood properties, Polyheme can be administered in large quantities (up to 5000 mL). This product is intended to be used in trauma patients. Clinical vasoconstriction has not been reported. Early problems with oxygen yield and production were observed. Purification was also a problem with Escherichia coli, but now is not. Further work on improving oxygen yield is underway with additional recombinants.</td>
</tr>
<tr>
<td>Pyridoxylated and glutaraldehyde polymerised human haemoglobin, PolyHeme, Northfield Laboratories, Chicago, IL</td>
<td>Controlled clinical trials in cardiac surgery have shown reduced exposure to allogeneic transfusion with few side-effects and no negative effect on mortality. Closest to human blood properties, Polyheme can be administered in large quantities (up to 5000 mL). This product is intended to be used in trauma patients. Clinical vasoconstriction has not been reported. Early problems with oxygen yield and production were observed. Purification was also a problem with Escherichia coli, but now is not. Further work on improving oxygen yield is underway with additional recombinants.</td>
</tr>
<tr>
<td>Recombinant human haemoglobin, Optro, Somatogen, Boulder, CO, Baxter Healthcare, Roundtree, IL</td>
<td>Controlled clinical trials in cardiac surgery have shown reduced exposure to allogeneic transfusion with few side-effects and no negative effect on mortality. Closest to human blood properties, Polyheme can be administered in large quantities (up to 5000 mL). This product is intended to be used in trauma patients. Clinical vasoconstriction has not been reported. Early problems with oxygen yield and production were observed. Purification was also a problem with Escherichia coli, but now is not. Further work on improving oxygen yield is underway with additional recombinants.</td>
</tr>
<tr>
<td>Polynitroxylated polymerised haemoglobin, PNH, SynZyme Technologies, Irvine, CA</td>
<td>Controlled clinical trials in cardiac surgery have shown reduced exposure to allogeneic transfusion with few side-effects and no negative effect on mortality. Closest to human blood properties, Polyheme can be administered in large quantities (up to 5000 mL). This product is intended to be used in trauma patients. Clinical vasoconstriction has not been reported. Early problems with oxygen yield and production were observed. Purification was also a problem with Escherichia coli, but now is not. Further work on improving oxygen yield is underway with additional recombinants.</td>
</tr>
</tbody>
</table>
more trauma patients died than controls, resulting in discontinuation of further product development from the manufacturer.

Perfluorocarbon emulsions can dissolve large amounts of any gas, including oxygen and carbon dioxide. These emulsions are effective for delivery of oxygen during haemodilution in patients undergoing orthopaedic surgery at 0·9 and at 1·8 g/kg perfluorocarbon doses. In a multinational randomised study of a perfluorocarbon solution to augment acute normovolaemic haemodilution during orthopaedic surgery, perfluorocarbon combined with 100% oxygen was more effective than autologous blood in reversal of physiological transfusion triggers. Because of the small sample size, efficacy of the perfluorocarbon solution in elimination of allogeneic blood exposure was not recorded. With their high affinity to dissolve gases, prevention of, and therapy for microembolic bubbles from cardiopulmonary bypass or preservation of solid organs for transplantation are other possible and desirable applications for which perfluorocarbons seem to be ideally suited.

The two principal applications for the artificial oxygen carriers under clinical investigation are in patients with trauma and in those who are undergoing surgery, with or without acute normovolaemic haemodilution. The rationale for use of artificial oxygen carriers with haemodilution is three-fold: the cellular haemoglobin collected during haemodilution would be used to replace the haemoglobin solution or other synthetic oxygen carrier as it is eliminated; use of artificial oxygen carriers would permit more aggressive haemodilution with lower targeted cellular haemoglobin concentrations than would otherwise be tolerated; and an artificial oxygen carrier could serve as a replacement fluid during blood loss.

At present, artificial oxygen carrier products are in various stages of clinical development (panel 3). If approved by the FDA, they would most likely be readily applied in military casualties and in trauma patients, massive surgical blood loss settings, or in fulminant haemolytic anaemias. The role of these substances in these and other arenas will most likely be determined by issues related to blood inventory and costs, rather than the safety of the blood supply.

Other beneficial molecules in human blood are being identified, isolated, and characterised, leading to the availability of blood-derived or ex-vivo synthesised therapeutic agents. One likely candidate molecule is the von Willebrand factor-cleaving metalloprotease, which has been associated with thrombotic thrombocytopenic purpura. Treatment for this potentially fatal disorder requires daily plasma apheresis (typically for 1–2 weeks or longer) with plasma replacement. During a therapeutic course, patients are generally exposed to over 200 blood donors. In Canada, 39% of all plasma apheresis procedures are for treatment of thrombotic thrombocytopenic purpura. Many patients with non-familial, idiopathic thrombotic thrombocytopenic purpura, activity of the von Willebrand factor-cleaving metalloprotease is reduced (typically as a result of an inhibitor), and the rarer familial recurrent thrombotic thrombocytopenic purpura is a result of gene mutations yielding a dysfunctional metalloprotease. The actual protease has been isolated and partly sequenced. Availability of a metalloprotease preparation might obviate the need for plasma apheresis and improve outcomes in this serious disorder.

Oversight

Whether transfusion services will participate in implementation or distribution of emerging biotechnologies (panel 1) such as pathogen inactivation and artificial oxygen carriers is not yet established. As both regulated and marketed pharmaceuticals, artificial oxygen carriers might be applied clinically as more traditional pharmaceutical therapeutics, similar to factor concentrates.

It is important that oversight of these biotechnology products and other specialised blood products (such as solvent detergent plasma, leukoreduced blood products, irradiated blood components, and cytomegalovirus negative blood components) be placed under the auspices of standing hospital medical committees such as a transfusion medicine committee, a pharmacotherapeutics committee, a surgical operating room committee, or a critical care committee (figure 2). This process would mean that longitudinal reviews could be done about use of these agents, not only to assist in proper selection of patients, but also to establish efficacy, track serious adverse events, and assess costs. The promotion of such products by the commercial sector directly to consumers could undermine both institutional oversight and an evidence-based rationale for use.

Global perspective

Worldwide, over 75 million units of blood are estimated to be donated every year. In the USA, the yearly transfusion of 12·5 million units (M Sullivan, National Blood Data
Resource Center, personal communication) corresponds to transfusion of one blood unit every 0·39 s. Only 43% of WHO’s 191 member states test blood for HIV, and hepatitis C and hepatitis B viruses. At least 13 million units of blood donated every year are not tested for these transmissible viruses. 80% of the world’s population is estimated to have access to only 20% of the worldwide supply of safe blood. Every year, unsafe transfusion and injection practices are estimated to account for 8–16 million hepatitis B infections, 2·3–4·7 million hepatitis C infections, and 80 000–160 000 HIV infections.18,19

In the poorest countries, access to safe blood is financially prohibitive, since testing costs between US $40 and $50 per blood donation. Testing might also not be reliable, especially if done by inadequately trained staff or with inadequate equipment. Transmissible diseases are not the only issue, since many countries do not have an organised transfusion system and donated blood is simply unavailable.

Although safe and available blood is demanded and expected in developed countries, limitations in resources make this goal unattainable for poor developing countries. The British philosopher John Stuart Mill (1806–73) stated that “actions are right to the degree that they tend to promote the greatest good for the greatest number.” Although our continued efforts to increase the safety of blood in developed countries are both impressive and commendable, more fundamental problems in developing countries need to be addressed.

Conflict of interest statement
Within the past 3 years, L T Goodnough has been a consultant for Ortho Biotech, Amgen, Novonordisk, and Hemosol; A Shander has been a consultant for Ortho Biotech, Amgen, Novonordisk, Abbott, AstraZeneca, Alliance Pharmaceuticals, and Hemosol; and M E Brecher has been a consultant for BioMérieux (formerly Organon Teknika), Pall Biomedical, Mosaic Technologies, and Hemosol. M E Brecher has received research support from BioMérieux and Haemonetics and honoraria from BioMérieux, Pall Biomedical, and Mosaic Technologies.

References
15 Dyshktra A, Jacobs J, Yontovian R. Prospective microbiologic surveillance (PMS) of random donor (RDP) and single donor apheresis platelets (SDP). Transfusion 1998; 38 (suppl) S104.
22 Laan E, Tros C. Improved safety and extended shelf-life of leukodepleted platelet concentrates by automated bacterial screening. Transfusion 1999; 39 (suppl): SS.
24 McDonald CP, Roy A, Lowe P, et al. The first experience in the United Kingdom of the bacteriological screening of platelets to increase shelf-life to 7 days. Vox Sang 2000; 78 (suppl P375).
26 Aubuchon JP, Cooper IK, Leach MP, et al. Bacterial culture of platelet units and extension of storage to 7 days. Transfusion 2001; 41 (suppl) S1.

56 FDA. Revised preventative measures to reduce the possible risk of transmission of CJ and vCJD by blood and blood products. http://www.fda.gov/cber/glins/cjdivecjd.htm (accessed Jan 5, 2002).

