THE COMBINED APPROACH MATRIX

A PRIORITY-SETTING TOOL FOR HEALTH RESEARCH

Edited by

Abdul Ghaffar
Andres de Francisco
Stephen Matlin
Contributors

This document was compiled with contributions from:
Nabeela Ali
Zulfqar Bhutta
Nigel Bruce
Andres de Francisco
Abdul Ghaffar
Walter Gulbinat
Lalit Kant
Stephen Matlin
Sania Nishtar

Acknowledgements

The editors would like to thank the chairpersons of the Indian Council of Medical Research and the Pakistan Medical Research Council for facilitating the application of the CAM; participants of Forums 5, 6 and 7 for their comments; Susan Jupp for review, design and editorial support; and colleagues in the Research and Programmes Unit of the Global Forum for their comments.
Contents

Contributors 2
Acknowledgements 2
Foreword 5
Acronyms and abbreviations 6

Section I. The case for priority setting in health research 7
 1. Introduction 8
 2. Health and health research 10
 Determinants of health status in populations 10
 The contribution of health research to human development 13
 3. Priority setting 15
 Underlying values 15
 Rationale and need for priority setting in health research 15
 Historical approaches to priority setting 16
 Priority-setting domains 20

Section II. Combined Approach Matrix: Principles, elements and functions 27
 1. Principles 28
 2. The main elements of the CAM 29
 The economic dimensions of priority setting 29
 The institutional dimensions of priority setting 30
 3. Functions of the CAM 32

Section III. Selected examples 33
 1. Application of the CAM 34
 2. Selected examples 35
 Application of the CAM at the global level 35
 Application of the CAM at the national level 38
 Application of the CAM to a disease 40
 Application of the CAM to a risk factor 41
 Application of the CAM to a vulnerable group 43

Section IV. Challenges and opportunities 47
 1. The lessons 48
 2. Challenges and opportunities 50
 3. Conclusions 51

Section V. Annexes 52
 Annex 1. Diarrhoeal diseases research in India: application of the CAM 53
 Annex 3. Schizophrenia: application of the CAM 60
 Annex 4. Indoor air pollution: application of the CAM 62
 Annex 5. Perinatal and neonatal care in Pakistan: application of the CAM 66
 Annex 6. Newborn health research priorities (summary view) 67
 Annex 7. References 68
Inserts

Insert 1. Main actors and factors determining the health status of a population 12
Insert 2. Analysing the burden of a health problem to identify research needs 17
Insert 3. Comparison of various priority-setting approaches 18
Insert 4. Key recommendations made since 1990 for health research on risk factors 23
Insert 5. Key recommendations made since 1990 on research priorities for diseases and conditions 25
Insert 6. The Global Forum Combined Approach Matrix for health research priority setting 28
Insert 7. Generic steps to use the CAM to identify key research projects at national level 36
Insert 8. TDR checklist for strategic analysis of health research needs (adapted from the CAM) 36
Foreword

The 1990 Commission on Health Research for Development drew attention to the existence of the “10/90 gap” – a situation in which less than 10% of global health research funds from public and private sources is devoted to 90% of the world’s health problems. Helping to correct this gap has been the main focus of the Global Forum for Health Research since it began operations in 1998.

One of the most important ways to address the 10/90 gap is to change the priorities that determine how existing health research funds are used. Indeed, from the perspective of responding to needs that are largely unmet, priority setting is as critical as conducting the research itself. Yet there is no simple way to set priorities – research on methodologies to help set priorities in health research is a recent development which can be traced back to the recommendations of the 1990 Commission. Since then, a number of approaches have emerged for developing and implementing priority setting.

It is important to differentiate between the process of priority selection (a mechanism that involves constituencies in order to decide upon research priorities) and the tools used for that purpose (instruments that enable the collection, organization and analysis of the mass of information needed to help set priorities). The present publication presents experiences with one such tool: the Combined Approach Matrix (CAM).

The CAM incorporates criteria and principles from earlier methods and links them into a matrix with the actors and factors that play a key role in the health status of a population. One axis of the matrix focuses on the five-step methodology of the Ad-Hoc Committee on Health Research (linking burden of disease with determinants, cost-effectiveness and financial flows), while the other underlines the fact that health research needs to operate beyond the biomedical field and to include individual and community behaviour, other sectors that have a profound influence on health, and the impact of governmental, macroeconomic policies on people’s health.

The work presented in this document is the result of efforts undertaken by the Global Forum and its partners and was compiled primarily by Dr Abdul Ghaffar. It describes the CAM’s background, components and applications to selected diseases, determinants and programmes identified in previous priority-setting exercises. This method aims at helping institutions at the national, regional and global levels to set their priorities in health research.

Widespread application of the Combined Approach Matrix can make a major contribution to evidence-based priority setting and thereby ensure that more health research is conducted on the most important and often most neglected areas of diseases and determinants globally. The Global Forum encourages governments and institutions and the funders and conductors of research everywhere to adapt and use this tool.

Stephen A. Matlin
Executive Director
Global Forum for Health Research
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACHR</td>
<td>Advisory Committee on Health Research (WHO)</td>
</tr>
<tr>
<td>AIDS</td>
<td>acquired immunodeficiency syndrome</td>
</tr>
<tr>
<td>ALRI</td>
<td>acute lower respiratory infections</td>
</tr>
<tr>
<td>ARI</td>
<td>acute respiratory infections</td>
</tr>
<tr>
<td>BOD</td>
<td>burden of disease</td>
</tr>
<tr>
<td>CAM</td>
<td>Combined Approach Matrix</td>
</tr>
<tr>
<td>COHRED</td>
<td>Council on Health Research for Development</td>
</tr>
<tr>
<td>COPD</td>
<td>chronic obstructive pulmonary disease</td>
</tr>
<tr>
<td>DALYs</td>
<td>disability-adjusted life years</td>
</tr>
<tr>
<td>DFID</td>
<td>Department for International Development (United Kingdom)</td>
</tr>
<tr>
<td>DTUs</td>
<td>diarrhoea treatment and training units</td>
</tr>
<tr>
<td>ENHR</td>
<td>Essential National Health Research</td>
</tr>
<tr>
<td>GBD</td>
<td>global burden of disease</td>
</tr>
<tr>
<td>HIV</td>
<td>human immunodeficiency virus</td>
</tr>
<tr>
<td>IAP</td>
<td>indoor air pollution</td>
</tr>
<tr>
<td>ICMR</td>
<td>Indian Council of Medical Research</td>
</tr>
<tr>
<td>IUGR</td>
<td>intrauterine growth retardation</td>
</tr>
<tr>
<td>LBW</td>
<td>low birth weight</td>
</tr>
<tr>
<td>NCDs</td>
<td>noncommunicable diseases</td>
</tr>
<tr>
<td>NGOs</td>
<td>nongovernmental organizations</td>
</tr>
<tr>
<td>NICED</td>
<td>National Institute of Cholera and Enteric Diseases (India)</td>
</tr>
<tr>
<td>ORS</td>
<td>oral rehydration salts</td>
</tr>
<tr>
<td>ORT</td>
<td>oral rehydration therapy</td>
</tr>
<tr>
<td>PHC</td>
<td>primary health care</td>
</tr>
<tr>
<td>PMRC</td>
<td>Pakistan Medical Research Council</td>
</tr>
<tr>
<td>R&D</td>
<td>research and development</td>
</tr>
<tr>
<td>SNL</td>
<td>Saving Newborn Lives (Pakistan)</td>
</tr>
<tr>
<td>SWOT analysis</td>
<td>analysis of strengths, weaknesses, opportunities and threats</td>
</tr>
<tr>
<td>TB</td>
<td>tuberculosis</td>
</tr>
<tr>
<td>TDR</td>
<td>UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases</td>
</tr>
<tr>
<td>VHIP</td>
<td>Visual Health Information Profile</td>
</tr>
<tr>
<td>UNICEF</td>
<td>United Nations Children’s Fund</td>
</tr>
<tr>
<td>USAID</td>
<td>United States Agency for International Development</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
Section I

THE CASE FOR PRIORITY SETTING IN HEALTH RESEARCH
1. Introduction

Since the funding available for health research is low in comparison to its very high potential benefits, it is essential that it be based on a rational priority-setting process. The use of a sound methodology and a scientific process is critical to ensure the identification of the research priorities that will make the greatest contribution to people’s health. Thus, setting priorities is as important as conducting the research itself.

The Commission on Health Research for Development (1990) reported that “too often priorities for public sector health research and development investments are determined with little concern for the magnitude of the problem to be addressed, for the extent to which scientific judgement supports the possibility that new products and initiatives will be more cost-effective than available alternatives, or for ongoing efforts elsewhere” (1). Even though it is crucial to promote development and help overcome the vicious circle of disease and poverty, health research has suffered from a severe disequilibrium. For the past decade, this imbalance has been captured in the expression the “10/90 gap”, which indicates that less than 10% of the estimated US$ 70 billion spent annually on health research by private and public sectors is devoted to 90% of the world’s health problems (2).

In 1996, the WHO’s Ad Hoc Committee on Health Research Relating to Future Intervention Options published a landmark report, Investing in health research and development. Since then, considerable progress has been achieved in the development of methods and instruments for priority setting in health research, at both global and local levels (3).

The International Conference on Health Research for Development (Bangkok 2000) identified some of the key features of a revitalized health research system. One of these is that “the health research agenda has to be driven by country needs and priorities, within an interactive regional and global framework. This requires countries to develop and retain the capacity to set their research priorities, and for research and development agencies, funding bodies and other international players to respect these priorities” (4).

It must be emphasized, however, that priority setting in health research is not an easy undertaking, and most definitely will not provide results as soon as the data have been fed into the process.

The Global Forum for Health Research has focused particular attention on further developing methods and instruments which can be used for evidence-based priority setting in health research. During the past three years, it has intensified its work on setting priorities for health research (2).

Even in everyday life, setting priorities is not easy. The process is much more difficult in the field of health research, where a large number of factors and actors enter into the equation. One of the roles of health research is to ensure that the measures proposed to break the vicious circle of ill health and poverty are based on evidence, as far as is feasible, so that the resources available to finance them are used in the most efficient and effective way possible.
It is important to differentiate between the *process* of priority selection and the *tools* used for that purpose. The *process* is the mechanism by which constituencies and stakeholders are involved and decide upon research priorities. It is evident that ensuring the participation of communities and users is a necessary part of the *process*.

The *tools* are the instruments which facilitate (i) the organization of the huge mass of information (regarding burden of disease, available resources, determinants, present knowledge, etc.) that is necessary to establish priorities on a scientific basis and (ii) its presentation in a way that permits analysis and comparison of the various possible fields of research, eventually permitting the identification of the areas with the most promising impact on people's health.

This study aims at describing a methodology (tool) that can help institutions at the national, regional and global levels to set their own priorities in health research. It briefly describes efforts and progress on the development of different tools but focuses particularly on the Combined Approach Matrix (CAM), a research priority-setting tool developed by the Global Forum.

After a brief description of important actors and factors in the health sector, an overview of the rationale and need for priority setting in health research is provided. Four domains of priority setting are distinguished: research on priority-setting methodologies, research on determinants and risk factors, research on policies and cross-cutting issues affecting health and health research, and research on diseases and conditions. In a subsequent section, the concepts and methods based on the CAM are outlined and their applicability discussed in regard to the four domains mentioned above.

Lastly, selected examples of CAM application are reported. Examples have been chosen from global and national programmes, vulnerable groups, communicable and noncommunicable diseases, and mental and neurological disorders. In addition, an example of applying the CAM to a common risk factor (indoor air pollution) is also presented.

It is hoped that the study will help to identify the data that are needed for evidence-based decision-making in health research, facilitate the compilation and presentation of such information, and provide some guidance on how to turn the evidence into action.
2. Health and health research

Health research helps to define and quantify the key determinants that affect health. Strategic research, for example, identifies, explores and describes factors which contribute to disease or good health, and which can help define health interventions. Epidemiological methods help quantify the potential impact of planned interventions, while costing can determine their sustainability. Biomedical research varies in scope from the development of new tools to the adaptation and implementation of known tools in the field. Behavioural research uses quantitative and qualitative techniques to examine behaviour at the individual and the community levels. Research can explore determinants of health in both the health and the non-health sectors, as well as the impact of macro-decisions at the global level.

Determinants of health status in populations

WHO defines health as “a state of complete physical, mental and social well-being and not merely the absence of disease or infirmity” (5). Unfortunately, the state of perfect health cannot be defined in operational terms. It is, therefore, possible to determine how many resources would be needed to achieve this happy state. Each society has to decide on the amount of resources it wants to devote to health and then establish priorities accordingly. In other words, the society makes informed decisions about its health programme. It may be useful to reflect for a moment on the meaning of the terms informed decision-making and health programme.

Informed decision-making in health should be based on an understanding of the relationship between an action and a health outcome. It requires having access to, and using, pertinent information for decision-making.

The goal of any health programme should be to improve the population’s health status, which is measured by two components:

- The degree of ill-health, or degree of mortality and morbidity, resulting from the diseases, disabilities, violence and social maladjustments that characterize a particular community’s burden of disease.
- The degree of physical and mental well-being characterizing the community.

Health status can be improved through health promotion activities, by means of burden prevention or by interventions geared at burden reduction or cure. The following are four domains of intervention:

- The environment (including family/household, community and habitat) where people’s exposure to risks and hazards is being reduced or where coping capacities are strengthened.
- The health system (including health and social services).
- Sectors other than health, such as workplace, legal and education sectors.
- The domain of macroeconomic policies.

There have been a number of attempts to represent the complexity of the actors and factors affecting the health status of a population and their interrelationships. Insert 1 (see page 12) is one such example derived from a number of previous descriptions.
The insert is entitled “Main actors and factors determining the health status of a population” in recognition of the fact that, behind each group of determinants, there are institutions that are clearly responsible for dealing with a particular group of determinants.

Insert 1 draws attention to the fact that the health status of a community is largely determined by the following four broad groups of actors, corresponding to four different domains of intervention:

The individual, household and community
While genetic factors cannot be easily changed, the individual may have a degree of choice about how much risk he or she wants to take with health. The family may be able to decide, at least in part, how many children they would like to have, how they should be educated, how to handle family conflicts, how to care for any disabled members, etc. The community will greatly influence the population’s health status through local decisions on sanitation, education, shelter, unemployment and handling of violence. The fact that choices and options are far more restricted for the poorest people provides one of the important linkages between poverty and ill health, and points to the health gain benefits that are associated with poverty-reduction programmes (6,7).

Health ministry and other health institutions
The health ministry and health professionals are responsible for the health legislation and policies of the country, and for health education and health promotion in general. They are the backbone of the health care system provided in the country. The organization, availability and accessibility of the health sector will profoundly influence the health status of the population.

Sectors other than health
Practically all sectors of economic activity in a country have an impact on the health status of the community through national or regional policies, decisions and activities. This includes, for example, areas such as the development of the agricultural sector, the transportation system, the water supply and sanitation, industrialization; the degree of environmental pollution; the level of education; the social security system; the level of unemployment; and the security system (i.e. controlling violence and criminality).

Macroeconomic policies
Although apparently remote from the health situation of the individual, both the government’s macroeconomic policies and the principles of good governance in general have a direct impact on it: for example, through the level of economic activity in a country (determined by numerous external actors, but also by government policies), trade policies, the allocation of the budget between the
Main actors and factors determining the health status of a population

Macroeconomic policies
- Budget policies
- Research policies
- Good governance, effectiveness of administrative measures to limit corruption.

Sectors other than health
- Agriculture/rural development
- Industry/energy
- Transport/infrastructure (e.g. water supply, sanitation)
- Environment (pollution control)
- Rural development
- Occupation (employment, working conditions)
- Urban development/housing
- Education
- Social security
- Security (controlling violence and crime).

Health status
- **Ill-health**
 - Mortality, morbidity, disability, violence, social maladjustment (fear, uprooting, social isolation)
- **Well-being**
 - Physical (full physical functioning, fitness, resistance to risk factors)
 - Mental (full intellectual and emotional functioning, coping with risk and problems)
 - Social (not suffering from exclusion).

The individual, household and community
- **Individual**
 - Genetics, exposure to health hazards, behaviour (risk taking)
- **Family**
 - Divorce, parental skills, family planning, human reproduction, family violence, care for disabled members
- **Community**
 - Education, sanitation, shelter, social pathology (crime, discrimination), working conditions, unemployment
- **Habitat**
 - Natural setting of life (climate), exposure to parasites and to natural or man-made disaster.

Health ministry and other health institutions

Health ministry (policies)
- Health education (personal hygiene, nutrition)
- Health legislation (alcohol and drug control)
- Nutrition and food safety
- Health promotion and lifestyle
- Policies on high risk and marginalized groups (refugees, migrants, minorities)
- Financing of health research

Health research community

Health systems and services
- Organization (public/private) and infrastructure (PHC/specialized care/hospitals)
- Activities (curative, preventive, self-help) and quality
- Availability/coverage and accessibility (geographical, financial, social, ethnic/cultural).

Source: Global Forum for Health Research
various ministries; the setting of pro-poor policies to ensure that services reach the poor and that social safety nets are provided to cushion them against shocks; the degree of commitment of the ministries to their mission; the efficiency and effectiveness of the administration; and the research policies pursued by the government (7).

As mentioned above, informed decision-making in health should be based on an understanding of the relationship between action and health outcome, and on having access to, and using, pertinent information.

The contribution of health research to human development

Bad health will directly and profoundly affect the economic situation and well-being of any individual in any society. This is particularly true in the lower income countries (because their social safety nets are weaker or non-existent) and for the absolute poor, due to the vicious circle of poverty and ill health (6,7,8).

Conversely, better health will boost the individual's level of income (lower treatment costs, increased revenue, longer term increase in revenue due to better work opportunities, increase in revenues due to longer life-expectancy, etc.); increase the individual's capacity to acquire an education; increase the family's productive opportunities; and increase substantially the psychological well-being of both the individual and the family. The benefits of good health will be even greater for the absolute poor, as they may transform the vicious circle of poverty into a virtuous circle, with better nutrition, lower risks of unemployment or underemployment, better housing, better use of training opportunities, higher productivity and, overall, better control over their life situation and that of their family. The whole process is complex and difficult to quantify, but even conservative estimates suggest that health investments often yield the highest rates of return compared to other public investments.

There is strong evidence that good health is associated with access to knowledge. For example, in many developing countries, children's survival correlates highly with their mother's level of education. Educated parents are more likely to adopt health-promoting behaviours, avoid unsafe ones and seek professional help when their children are unwell (9).

Research has led to the development of vaccines, drugs, diagnostics, water treatment methods, therapeutic equipment and algorithms for clinical procedures. Their impact on health has been profound. In many developing countries, child mortality has fallen even at times of economic stagnation; it is, therefore, more than likely that these technological interventions significantly contributed to this improvement.

The development of hormonal contraception has given women greater control over their fertility, and the treatment of diarrhoeal disease has been revolutionized by oral rehydration therapy (ORT). Since epidemiologists established the link between tobacco and lung cancer in the 1950s, governments have gradually introduced policy changes to restrict smoking and millions of individuals have chosen to quit the habit. Behavioural research has led to improvements in health as well as health care. The results of research in health economics and epidemiology can increase the cost
effectiveness of interventions and hence optimize the use of health care resources (1, 7).

In recent decades, the concept of development has evolved considerably, from a focus on physical capital in the 1960s and 1970s to a greater focus on human capital in the 1980s and 1990s, and finally to the present Millennium Development Goals adopted by the United Nations in September 2000 and which focus on poverty, health, gender equity, education, the environment and development partnerships (1, 3, 6, 7, 8).

The culture of research provides a rational, knowledgeable framework for progress in health. There are, therefore, strong political and economic interests for governments to invest more in health and health research, as recommended by the Commission on Macroeconomics and Health in its December 2001 report (7).
3. Priority setting

Underlying values

In the literature on the economic evaluation of health care, the recommended criterion for priority setting is essentially that of health maximization. This normative basis could, however, be considered to reflect the stated objectives in many nations’ health services when these refer to efficiency in terms of “value for money” or “as much health as possible within the given budget”. Recently, health research has shown increasing interest in attempts to reflect another objective – equity – in the health services financed by governments (10). Other objectives such as the measurement of the severity of disease have also been incorporated in the decision-making criteria of nations. Thus, before initiating an exercise of priority setting, institutions must have a clear understanding of the underlying values with which they will work.

Rationale and need for priority setting in health research

In view of the competing priorities for scarce health research funds, priority setting for health research is as critical as conducting the research itself. The process of priority setting is an important activity per se in that it engages institutions and individuals to question and evaluate different assumptions. A continuous review of priorities and priority-setting mechanisms is essential since research priorities change over time as a result of epidemiological, demographic and economic changes. Investment in priority setting for health research should be seen as complementary to the implementation of interventions to improve health status. The relevance of research, especially health research, is, however, frequently not recognized (1,2). Funding for health research is all too often seen as a luxury and is an easy target for budget cuts in times of financial stringency.

Priority setting in health becomes a complex task of evaluating the process using normative and other criteria outlined above. Another key consideration is the geographical level of application: local, national, regional or global. Although these multiple levels have common issues related to the appropriate use of resources, they offer vastly different settings for decision-making. Since the challenges in each will differ, the response and priorities for each will also need to be appropriate.

The Commission on Health Research for Development concluded that the majority of health research and development (R&D) resources are being used on issues that are relevant to only a minority of the world’s population (1). This is reflected in the fact that little or no research is undertaken on diseases affecting mainly the poor, and the application of research results for conditions prevalent in more advanced countries is not directly transferable to less advanced countries due to the high costs of the proposed interventions and/or the country-specific nature of the research undertaken. The population that is excluded from the benefits of health research is predominantly in the developing world, largely poor, and often marginalized from both power and decision-making. This situation raises questions of an economic, social, ethical and political nature (2).
One of the main contributions of the Ad Hoc Committee on Health Research’s report was the identification of specific areas where further investments in R&D would make a difference to global health (3). Their identification was based on a process that included five analytical steps, considerations of the attributable disease burden likely to be reduced by interventions and attendant costs. The intention was to identify a limited number of areas where R&D was insufficient relative to the magnitude of the problem and the potential for a significant advance. It was also to draw global attention (and resources) to these areas and track progress in promoting more work in these fields.

An important aspect of the Ad Hoc Committee’s work in priority setting was to underline the need for economic analysis in health. Resource allocation within health care, and especially health research, is both value-laden and ethically charged. Yet seeking cost-effective use of health R&D funds – especially public funds – is consistent with public health aims. Such a rationale has enabled the search for priorities and prioritization processes to be further developed.

Insert 2 (page 17) shows how the Ad Hoc Committee proposes to analyse the burden of a health problem in order to identify research needs.

Historical approaches to priority setting

Attempts have been made, particularly in the last 15 years, to systematize the approach to setting priorities in health research. The objectives have been to make the process more transparent and to help decision-makers, particularly in the public sector, make more informed decisions, thus allocating limited research funds in the most productive way from a world perspective.

Although the various approaches tackle the problem from very different angles and with different terminologies and methodologies, there appears to be at least implicit consensus that the central objective is to have the greatest impact on the health of the greatest number of people in the community concerned (world or country level) for a given investment.

Since the Commission on Health Research for Development in 1990, priority-setting exercises have used various methods and processes. The objective of this section is to compare these various efforts on prioritization in health research in order to highlight their similarities and complementarity. An overview of this analysis is presented in Insert 3 (page 18).
Analysing the burden of a health problem to identify research needs

Relative shares of the burden that can and cannot be averted with existing needs

\[\begin{align*}
\text{Unavertable with existing interventions} \\
\text{Averted with current mix of interventions and population coverage} \\
\text{Avertable with improved efficiency} \\
\text{Avertable with existing but non-cost-effective interventions} \\
\end{align*}\]

\[\begin{align*}
x & \text{ — population coverage with current mix of interventions} \\
y & \text{ — maximum achievable coverage with a mix of available cost-effective interventions} \\
z & \text{ — combined efficacy of a mix of all available interventions} \\
\end{align*}\]

Source: Adapted from Ad Hoc Committee on Health Research, *Investing in health research and development* (WHO, 1996)
Insert 3
Comparison of various priority-setting approaches

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Essential National Health Research</th>
<th>Ad Hoc Committee on Health Research</th>
<th>Advisory Committee on Health Research</th>
<th>Global Forum Combined Approach Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Objective of priority setting</td>
<td>• Promote health and development on the basis of equity • Help decision-makers make rational choices in investment decisions.</td>
<td>Help decision-makers make rational choices in investment decisions so as to have the greatest reduction in the burden of disease for a given investment (as measured by number of DALYs averted).</td>
<td>Address problems of critical significance for global health: population dynamics, urbanization, environment, shortages of food and water, new and re-emerging infectious diseases.</td>
<td>Help decision-makers make rational choices in investment decisions so as to have the greatest reduction in the burden of disease for a given investment (as measured by number of DALYs averted), on the basis of the practical framework for priority setting in health research.</td>
</tr>
<tr>
<td>2. Focus at the global or national level?</td>
<td>Focus on situation analysis at the global level; method also applicable at the country level.</td>
<td>Focus on situation analysis at country level; residual problems to be studied at global level.</td>
<td>Priority to “significant” and “global” problems, requiring “imperative” attention.</td>
<td>Method applicable at both global and national levels.</td>
</tr>
<tr>
<td>3. Strategies/principles</td>
<td>• Priorities set by all stakeholders. • Process for priority setting should be iterative and transparent. • Approach should be multi-disciplinary.</td>
<td>• Five-step process. • Process should be transparent.</td>
<td>• Priorities should be set by all stakeholders. • Process should be transparent and comparative. • Multidisciplinary approach.</td>
<td>• Priorities should be set by all stakeholders. • Transparent and iterative process. • Approach should be multidisciplinary (biomedical sciences, public health, economics, environmental sciences, education sciences, social and behavioural sciences).</td>
</tr>
<tr>
<td>4. Criteria for priority setting</td>
<td>Based on an estimate of severity and prevalence of disease.</td>
<td>Measured by DALYs (number of years of healthy life lost to each disease).</td>
<td>Allocate resources to the problems deemed of “greatest global burden”.</td>
<td>Measured by DALYs (number of years of healthy life lost to each disease) or other appropriate indicators.</td>
</tr>
<tr>
<td>4.1 Burden of disease</td>
<td>Analysis of multi-disciplinary determinants (biomedical, economic, social, behavioural, etc.).</td>
<td>• Analysis of mostly biomedical determinants • Other determinants implicit.</td>
<td>Analysis of multi-disciplinary determinants (biomedical, economic, social, behavioural, etc.).</td>
<td>Analysis of determinants at following intervention levels: • individual/family/community • health ministry and research institutions • sectors other than health • government macroeconomic policies.</td>
</tr>
<tr>
<td>4.2 Analysis of determinants of disease burden</td>
<td>Some attempts at measurement in terms of impact on severity and/or prevalence.</td>
<td>Cost-effectiveness measured in terms of DALYs saved for a given cost.</td>
<td>Implicit reference to cost-effectiveness analysis.</td>
<td>Cost-effectiveness measured in terms of DALYs saved for a given cost.</td>
</tr>
</tbody>
</table>

Source: Global Forum for Health Research
Major efforts to systematize priority setting include:

Priority setting using the Essential National Health Research strategy

Based on the Commission’s recommendation to “encourage all countries to undertake Essential National Health Research (ENHR)”, the Council on Health Research for Development (COHRED) was established in 1993 to assist developing countries with the implementation of this strategy to organize and manage research.

In its promotion of the ENHR concept, COHRED emphasized the following principles: countries as the key actors in health research for development; the need for solid evidence to underpin an inclusive health research agenda; the need to involve all stakeholders in the prioritization process; and the need to link research results to policy and to action (10).

The three essential stages recommended by COHRED to increase the potential success of the priority-setting process are the following:

Planning the priority-setting process

- Identify leadership for the process, i.e. the central government or a body officially assigned by the government to coordinate health research in the country.
- Identify and involve stakeholders, i.e. decision-makers (at various levels), researchers, health service providers and communities.
- Gather and analyse information for setting priorities (situation analysis) in three broad categories:
 - health status (main health problems, common diseases, determinants or risk factors)
 - health care system (current status, deficiencies and problems)
 - health research system (availability of human, fiscal and institutional resources for research).

Setting the priorities

- Preparation of the information into a manageable list of priority health (system) problems and related research areas/issues.
- Step-by-step process of stakeholders who determine the criteria for selecting priorities and a method for weighting the priorities.
- Determination of the scope of the expected outcome from broad lists of priority health (system) problems to a detailed list of priority research questions.

Implementing the priorities

- From research priority areas to research portfolio: transformation of the broad list of research priority areas into a research portfolio.
- From meeting report to policy decision: integration of priorities into an appropriate governmental plan, agenda or policy to ensure political backing.
- Research priorities and a changing environment: periodic review and update of priorities.
- Investing in research priorities.
Five-step process of the Ad Hoc Committee on Health Research

Step 1: Magnitude (disease burden)
Estimate the magnitude of the problem/burden of disease by using standard established methods.

Step 2: Determinants (risk factors)
Analyse the factors (determinants) responsible for the persistence of the diseases or conditions.

Step 3: Knowledge
Assess the available knowledge to reduce or eliminate the burden of that particular disease, condition or risk factor.

Step 4: Cost-effectiveness
Assess the cost and effectiveness of agreed interventions needed to reduce the magnitude of the problem.

Step 5: Resources
Calculate/identify the present level of resources available for a particular disease, determinant or a group of diseases/conditions.

Advisory Committee on Health Research
In its 1997 publication, the Advisory Committee on Health Research (ACHR) set out the Visual Health Information Profile (VHIP), a computer-based visual display showing the “totality of the health status of a country” in a way that enables comparisons of health status both for a given country over time and between countries at a given point in time (11). It draws attention to the large diversity of actors and factors affecting the health status of a population and defines indicators of a country’s health status permitting these comparisons over time and across countries.

Combined Approach Matrix of the Global Forum for Health Research
This is described in detail in the next section.

Priority-setting domains
Priorities in health research have traditionally been formulated in terms of diseases and conditions. It is now realized that this is only one domain of health research and that health determinants themselves have to be prioritized and are competing for the same funding as disease-focused priorities. But, to make things more difficult, there are at least two other areas of health research which have to be prioritized against the others, i.e. methodologies for priority setting and cross-cutting issues in health research, such as policies, poverty and health, gender and health, and research capacity strengthening.

It is, therefore, important that the prioritization exercise in health research take all of these domains into account.
Research on priority-setting methodologies

The failure in practically all countries to establish a process for priority setting based on the burden of diseases and their causes has led to a situation in which only about 10% of health research funds from public and private sources are devoted to 90% of the world’s health problems (measured in disability-adjusted life years or DALYs). This extreme imbalance in research funding has a very high economic and social cost for individuals, countries and the world as a whole. To make matters worse, even the 10% of funds allocated to the 90% of the world’s health problems are not used as effectively as they should be (2).

The reasons for this imbalance in health research funding include:

In the public sector

- Over 90% of research funds are spent by only a small number of countries which, understandably, have given priority to their own immediate national health research needs, even though this may be a short-sighted position.
- Decision-makers are often unaware of the magnitude of the problems outside their own national borders. In particular, they are unaware of the impact on their own country of the health situation in the rest of the world both directly (e.g. rapid growth in travel, re-emerging diseases, development of antimicrobial resistance) and indirectly (e.g. lower economic growth, migration).
- The decision-making process is influenced by a range of factors including the personal preferences of influential scientists or decision-makers, competition between institutions, donor preferences, career ambitions and tradition.
- There is insufficient understanding of the role the public sector could play in supporting the private sector in the discovery and development of drugs for “orphan” diseases.

In the private sector

- Decision-makers in the private sector are responsible for the survival and success of their enterprise and for the satisfaction of their shareholders. Their decisions are based largely on profit perspectives which inevitably limit investment in diseases prevalent in low- and middle-income countries, as market potential in these countries is often underestimated.
- In low- and middle-income countries, pharmaceutical companies have the potential to develop and produce products for diseases prevalent in these states. However, their funding capacity is comparatively small in global terms and, therefore, this potential remains largely untapped.

Research on policies and cross-cutting issues affecting health and health research

The Commission on Health Research for Development recommended the evaluation of the health impact of sectors other than health. It reported that most health research funding is in the field of clinical, biomedical and laboratory research, ranging from 60% to 90% in the countries studied, and that research activity was limited in the field of health information systems, field epidemiology, demography, behavioural sciences, health economics and management. The Commission suggested that country-specific, multidisciplinary research could overcome that shortcoming and
that research on policies, systems and determinants had as much potential as the biomedical approach.

The Ad Hoc Committee on Health Research made recommendations related to determinants, mainly in the field of health research management (1). In particular, it recommended identifying research areas and research projects likely to have the greatest impact on the largest number of people. It also recommended the use of the most cost-effective interventions to reduce the highest level of disease burden.

The Ad Hoc Committee recommended studying the underlying common determinants of health status, including population dynamics, urbanization, environmental threats, shortages of food and water, and behavioural and social problems (3).

The recommendations of ENHR projects included efforts to initiate, in each country, a demand-driven process to identify risk factors and the magnitude of health problems based on equity, health policy research and health system management and performance (10). The priorities should be identified on the basis of their ability to contribute to equity and social justice, as well as on the basis of ethical, political, social and cultural acceptability.

The International Conference (Bangkok 2000) recommended efforts to strengthen the health research systems and to link health research to development, thereby ensuring that research is carried out in the context of the prevailing problems in a given country. The priority recommendations focus on knowledge management, research capacity strengthening and governance of health research systems. The underpinning principles are health equity and sustainable health research (4).

Research on determinants and risk factors

Focusing on risks to health is key to preventing disease and injury. In its *World Health Report 2002*, WHO noted: “Much scientific effort and most health resources are directed towards treating disease. Data on disease or injury outcomes, such as death or hospitalization, tend to focus on the need for palliative or curative services. In contrast assessments of burden resulting from risk factors will estimate the potential of prevention” (12).

The health authorities in a country should be aware of the major risks to the health of their population. If major threats exist without cost-effective solutions, then these must be placed high on the agenda for research. Reliable, comparable and locally relevant information on the size of different risks to health is therefore crucial to prioritization, especially for governments that are setting broad directions for health policy and research. A summary of key recommendations made since 1990 on health research for risk factors is given in Insert 4 below.
Insert 4

Key recommendations made since 1990 for health research on risk factors

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Health policies and systems</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Health information systems</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Gender and socioeconomic inequalities</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Health equity</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Health cost and financing</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Capacity building for health policies</td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Health behaviour research</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Health impact of development of other sectors</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Sustainable health research linked to development</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Environmental degradation</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Child nutrition research</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Food security</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Formal education</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Education by health sector</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Food and water management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Research on social justice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Occupational health</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Reproduction and contraception</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Population dynamics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

Source: Global Forum for Health Research
Research on diseases and conditions

The Commission on Health Research for Development recommended research on specific diseases that accounted for the highest burden in developing countries. It differentiated between causes of death in developing and developed countries, and drew attention to the high burden in the former in comparison with the low investment in research. The Commission noted that, as the epidemiological transition evolves, developing countries will increasingly face a double burden of pre-transitional diseases (communicable diseases) and post-transitional diseases (noncommunicable diseases and injuries).

In its report, the Ad Hoc Committee on Health Research combined diseases with determinants (3). Based on the use of the VHIP, WHO’s ACHR focused its recommendations in 1997 on both diseases with the highest burden in developing countries and the underlying common determinants of health status (11). Recommendations in 1999 by ENHR projects focus on countries. The International Conference in Bangkok (2000) shifted its focus and recommendations on the revitalization of health research systems to deal with the most prevalent diseases in low- and middle-income countries and research capacity strengthening. It seeks to lower the burden of disease by addressing health equity issues and decreasing health inequalities.

A summary of key recommendations made since 1990 on research priorities for diseases and conditions is given in Insert 5 below.
Insert 5
Key recommendations made since 1990 on research priorities for diseases and conditions

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tropical diseases (malaria, schistosomiasis, leprosy) TB–HIV</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Childhood diseases (diarrhoeal and respiratory diseases)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sexually transmitted infections</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dengue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maternal mortality</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cancer/diabetes</td>
<td></td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mental/neurological diseases</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Violence and injuries</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic degenerative diseases</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The International Conference 2000 focused on the need to improve health research systems to deal with nationally prevailing diseases.

Source: Global Forum for Health Research
Section II

COMBINED APPROACH MATRIX: PRINCIPLES, ELEMENTS AND FUNCTIONS
1. Principles

The Combined Approach Matrix (CAM) is a tool that aims at (i) helping to classify, organize and present the large body of information that enters into the priority-setting process; (ii) identifying gaps in health research; and, on this basis, (iii) identifying health research priorities, based on a process which should include the main stakeholders in health and health research.

Priority setting in health research must take into account an “economic” dimension as underlined in the Ad Hoc Committee’s five-step process (1996) as well as an “institutional” dimension, which is emphasized by the 1991 ENHR approach and the 1997 Visual Health Information Profile proposed by the Advisory Committee on Health Research. The “institutional” approach argues that the health status of a population depends as much on actors and factors outside the health sector as on the national health system itself.

The CAM’s objective is to incorporate both the economic and the institutional dimensions into a single tool for priority setting. The resulting matrix for priority setting is presented in Insert 6 below.

The advantage of the proposed matrix is that it will help organize, summarize and present all available information on one disease, risk factor, group or condition, and facilitate comparisons between the likely cost-effectiveness of different types of interventions at different levels. The information may be partial, and probably even sketchy in some cases, but it will improve progressively, and even limited information is sometimes sufficient to indicate promising avenues for research.

Insert 6
The Global Forum Combined Approach Matrix for health research priority setting

<table>
<thead>
<tr>
<th>The individual, household and community</th>
<th>Health ministry and other health institutions</th>
<th>Sectors other than health</th>
<th>Macro-economic policies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Disease burden*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Determinants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Present level of knowledge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Cost and effectiveness**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Resource flows**</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Global total estimated at US$ 1.4 billion DALYS. National estimates should be used for national exercises.
** Global total estimated at US$ 73.5 billion DALYS for 1998. National estimates should be used for national exercises.

Source: Global Forum for Health Research
2. The main elements of the CAM

The economic dimensions of priority setting

The components of the five-step process identified in the Ad Hoc Committee’s 1996 report (3) are the following:

Step 1: Disease burden
Measure the disease burden as years of healthy life lost due to premature mortality, morbidity or disability. Summary measures, such as the DALY, can be used to measure the magnitude. Other methods serving the same purpose can also be used.

A number of examples are presented in Section III of this report. It should be noted that the term “burden of disease” (BOD) has been loosely applied according to available data sources. These ranged from simple desk reviews of some international reports, to the Global Burden of Disease Studies and national reports and research studies. Put simply, the ideal is to have data available in summary measures (such as DALYs), but the process of applying the CAM should not be abandoned if such data are not available.

Step 2: Determinants
Analyse the factors responsible for the persistence of the burden, such as lack of knowledge about the condition or disease, lack of tools, failure to make use of existing tools, limitations of existing tools or factors outside the health domain.

Such information is available from global reports and the international, peer-reviewed literature. However, there are always some important, local reasons to explain why the problem persists, which need to be considered closely when identifying research priorities.

Step 3: Present level of knowledge
Assess the present knowledge base available to help solve the health problem and evaluate the applicability of solutions, including the cost and the effectiveness of existing interventions.

For this purpose, international reports and peer-reviewed literature can provide a good amount of information but local conditions and sensitivities need to be kept in mind when considering the cost and effectiveness examples from other places.

Step 4: Cost and effectiveness
Assess, against other potential interventions, the promise of the R&D effort and examine if future research developments would reduce costs, thus allowing interventions to be compared and applied to wider population segments.
This sort of information, however, is often difficult to obtain, as very few national organizations/institutes can supply it. It presents a challenge for those seeking to apply the CAM at national or local levels.

Step 5: Resource flows
Calculate the present level of investment on research for the specific disease and/or determinant.

However, it is not easy to calculate research investments because national and local health budgets in most developing countries do not disaggregate information about specific diseases and conditions, and much less about health research. This is another problem faced by health and health research managers who are attempting to set priorities, whether at global, national or local level.

The institutional dimensions of priority setting

The institutional dimensions include the following groups of actors and factors:

The individual, household and community
In the CAM, this column reviews the elements that are relevant to the reduction of disease burden and can be modified at the individual, family/household or community level. This includes interventions on primary care, prevention and education. For example, in the case of malaria, prevention using barrier methods such as insecticide-impregnated bednets is a key intervention at the individual level.

Health ministry and other health institutions
This column in the matrix assesses the contribution of the health ministry and health research systems to the control of the specific disease or condition being explored. The column focuses on:
- Biomedical interventions and their application throughout the whole health system
- Policies and structures that can help the health system reduce the burden of a specific condition
- The potential for the health research community to provide tools, processes and methods to enable the health system to reduce the burden of a disease.

Sectors other than health
This column focuses on all other ministries, departments and institutions that contribute to improving health but are not necessarily part of the health ministry or its subordinate departments. Examples include the role of the transport sector in the prevention of road traffic injuries, that of the education system (both formal and informal) in changing people’s health behaviour (washing hands, smoking, substance abuse, avoiding risky behaviour in general, etc.) or that of environmental protection agencies in reducing health hazards.
Macroeconomic policies
This column in the matrix focuses on the elements at the central government level or those outside the country that can have a role in the control of the diseases or conditions. An example of this is the impact of World Trade Organization agreements concerning intellectual property rights on the provision of antiretrovirals for the treatment of people living with HIV/AIDS.
3. Functions of the CAM

Information gathered in a priority-setting exercise conducted at country, regional and global levels could be introduced into the CAM as a common framework to organize and present the collected information (as a basis to identify gaps in health research and health research priorities).

In summary, the CAM:

- Brings together in a systematic framework all information (current knowledge) related to a particular disease or risk factor
- Identifies gaps in knowledge and future challenges
- Relates the five-step process in priority setting (economic axis) with the actors and factors (institutional axis) determining the health status of a population
- Permits the identification of “common factors” by looking across the diseases or risk factors
- Is applicable to priority setting in the field of:
 - national, regional or global problems
 - both diseases and risk factors
- Permits the linkage of priorities in the field of health and health research
- Enables the rapid identification of the effect of a change in one of the “boxes” of the matrix on the others
- Permits taking into account the large number of factors outside the health sector that have an important impact on people’s health

However, it is important to realize that the CAM summarizes the evidence base for priority setting in health research, but that it is not in itself an algorithm for priority setting.
Section III

SELECTED EXAMPLES
1. Application of the CAM

For the sake of simplicity, this section describes applications of the CAM at national level only. However, similar processes can be followed to determine the health research priorities at the local and global levels. They can be applied by individual institutions, development agencies, and local and national governments to identify their priority areas for engagement in, or support to, health research.

The first step is to estimate the burden for each of the main diseases and risk factors in the country and to involve all national institutions and stakeholders with particular knowledge of that disease. Each institution will feed into the matrix the information at its disposal. As a result, the matrix will gradually incorporate the best available information regarding a specific disease or risk factor. In many cases, instead of solid information, the matrix will reveal how little information is available to make rational, cost-efficient and effective decisions in the fight against specific diseases. These gaps in the information matrix are all candidates for research.

The second step is to identify which information would have the greatest impact on the disease. This may be a time-consuming and iterative process, as it is probable that various stakeholders will have different opinions as to the most important factor(s) to be studied to reduce the burden of the particular disease.

Prioritization between diseases will require a further process which takes into account, among other factors, the research topics likely to have the greatest impact in reducing the burden of disease for the country. Insert 7 (page 35) provides generic steps to use the CAM to identify key research projects at national level.

This overall list of national research priorities is then divided among the country’s research institutions based on their respective comparative advantages.

This is a long-term effort. The information may be partial in the first exercises, probably even sketchy in some cases, but the tool should demonstrate its usefulness at an early stage by highlighting the most important gaps in the information needed to make evidence-based decisions and by enabling some decisions to be made despite the limited information available.
2. Selected examples

The CAM’s feasibility and usefulness have been tested in the field. During these tests, the CAM was applied to a range of settings, including global programmes and national plans, communicable and noncommunicable diseases, risk factors and vulnerable groups. Selected examples are given below.

Application of the CAM at the global level

TDR

The Special Programme on Research and Training in Tropical Diseases (TDR) is an international research programme co-sponsored by the United Nations Children’s Fund (UNICEF), the United Nations Development Programme, the World Bank and the World Health Organization. A priority-setting exercise was undertaken in 2002–2003 to realign TDR’s strategic focus in research to address the disease control priorities of the next five years (13). A summary of this exercise is presented below.

The first step in the TDR prioritization process was to bring together the TDR Disease Research Coordinators, TDR staff, WHO disease control experts, country programme managers and disease experts (Disease Reference Group and Scientific Working Groups) to analyse rationally and transparently the current situation of each disease. This included taking into account the current status of research and the comparative advantages of TDR. The result was the definition of a set of “strategic TDR emphases” (or priorities) in the scientific and technical areas of work for the next few years.

The exercise was based on the following documents:

- The analyses carried out by TDR, WHO and the World Bank between 1993 and 1996 which culminated in the 1996 Ad Hoc Committee Report (3)
- The Global Forum’s proposed CAM for setting priorities in health research.

A modification of the CAM (see Insert 8 below) led to the definition of the following seven steps used in the TDR prioritization process:

- What is the size and nature of the disease burden and epidemiological trends?
- What is the current disease control strategy?
- What are the major problems/challenges for disease control?
- What research is needed to address these problems/challenges?
- What is currently being done in R&D, and what research opportunities exist?
- What are TDR’s comparative advantages?
- Strategic emphases for R&D.

TDR deals with the following diseases: African trypanosomiasis, Chagas disease, dengue fever, leishmaniasis, leprosy, lymphatic filariasis, malaria, onchocerciasis, schistosomiasis, tuberculosis and (as of 2004) HIV/AIDS.
Insert 7
Generic steps to use the CAM to identify key research projects at national level

• Estimate the burden for each of the main diseases and risk factors.
• For each main disease and risk factor, bring together all institutions and stakeholders in the country with a particular knowledge of that disease or risk factor.
• For each of the selected diseases and risk factors, feed into the matrix the information at the disposal of each institution, thus gradually incorporating into the table the best available information regarding the disease/risk factor.
• Complete the matrix with information from other sources that may be relevant for the country concerned.
• Identify which missing information would, if made available, be likely to contribute the most to decreasing the burden of that disease or risk factor.
• Identify the research projects that can fill these gaps in information based on the underlying values and comparative advantages of the institution. This would be the list of research priorities for that disease or risk factor.
• Compare research priorities thus identified across diseases and risk factors and come up with a final list of top priorities in the various research fields.

Source: Global Forum for Health Research

Insert 8
TDR checklist for strategic analysis of health research needs (adapted from the CAM)

1. What is the size and nature of the disease burden?
 • What are the epidemiological trends?
 • What are the current or likely future factors that impact on burden at the following levels, and in what way:
 ▪ individual, community and household
 ▪ health sector (health ministry, systems and service delivery)
 ▪ non-health sectors
 ▪ government and international?

2. What is the control strategy?
 • Is there an effective package of control methods assembled into a “control strategy” for most epidemiological settings?
 • What are its current components (stratify by geographical areas if necessary)?
 • If such a control strategy exists, how effective is it (based on observation), or could it be (based on epidemiological modelling) at:
 ▪ reducing morbidity
 ▪ preventing mortality
 ▪ reducing transmission
 ▪ reducing burden?
 • What is known of the cost-effectiveness, affordability, feasibility and sustainability of the control strategy?
3. Why does the disease burden persist?
What are the constraints to better control at the following levels:
- individual, community and household (e.g. male dominance, poverty, access to services)
- health sector (e.g. political commitment to control, inadequate human resources, poor management and organization of service delivery, poor financing or drug supply systems, lack of knowledge of how to control the disease, lack of effective tools, or lack of resources to implement effective tools and strategies)
- non-health sectors (e.g. negative or positive impact on disease of social and agricultural policies, etc.)
- government and international (e.g. impact of structural adjustment programmes, poverty alleviation strategies, macroeconomic policies)?

4. What is needed to address these constraints effectively?
(include both control and research aspects)
- Which of these constraints could be addressed by research?
- Which of the research-addressable constraints, if addressed, could:
 - improve the control/service delivery system
 - ultimately, lead to a reduction in disease burden
 - be addressed by affordable research
 - be completed within five years?
- What are the potential pitfalls or risks of such research?

5. What can be learnt from past/current research?
- From current/past research – both TDR-supported and outside TDR
- What is known about existing research resource flows?

6. What are the opportunities for research?
- What is the state-of-the-art science (basic and operational) for this disease and what opportunities does it offer?
- What is the current status of institutions and human resources available to address the disease?

7. What are the gaps between current research and potential research issues which could make a difference, are affordable and could be carried out in (a) five years or (b) in the longer term?

8. For which of these gaps are there opportunities for research?
- Which issues can only be realistically addressed with increased financial support or investment in human and institutional capacity?
- Which issues are best suited to the comparative advantage of TDR?
The TDR prioritization strategy (13) led to the following results:

- A transparent and objective prioritization process
- The active participation of partners from both health research and disease control
- A direct link between strategic emphases and the research needs of disease control
- An efficient mechanism to communicate its strategic choices to its partners
- A continuous monitoring system for incorporating new priority needs.

For the purposes of setting the future research agenda, the results of this exercise categorized the diseases with which TDR is working into the following three groups:

Group 1: Emerging and uncontrolled diseases
Diseases in this group include African trypanosomiasis, dengue fever and leishmaniasis. The epidemiological pattern of these diseases indicates that they are increasing in prevalence and the tools are not well developed or applicable to large segments of the population. Research is required to improve the tools and the strategies to implement mass programmes.

Group 2: Control strategy available but disease burden persists
Diseases in this group include malaria, schistosomiasis and tuberculosis (TB). Effective interventions are available which can be applied on a wide scale with the potential to reduce the disease burden but this has not as yet taken place.

Group 3: Control strategy effective and elimination is planned
Diseases in this group include Chagas disease, leprosy, lymphatic filariasis and onchocerciasis. There are tools and strategies available to control these diseases and probably to eliminate them in the medium term. Operational research to achieve these objectives is required as the prevalence of the diseases is declining and elimination targets are evident.

Application of the CAM at the national level

Diarrhoeal diseases research in India
The Indian Council of Medical Research (ICMR) is an autonomous health research organization within the national Ministry of Health and Family Welfare. It provides stewardship and support for conducting research in finding feasible solutions to India’s health problems.

In 2000, a team from the Global Forum for Health Research presented the CAM’s concept and principles to a selected group of ICMR scientists in New Delhi. During 2002–2003, the National Institute of Cholera and Enteric Diseases (NICED) applied the CAM for setting research priorities for diarrhoeal diseases in India. An expert group of scientists drawn from various disciplines was established to complete the task.

In order to complete the cells of the CAM matrix, the expert group was charged with summarizing current knowledge. A SWOT (strengths, weaknesses, opportunities and threats) analysis carried out by NICED helped to highlight the Institute’s major
contributions and achievements, and the areas in which it has greater chances of achieving success. The expert group held consultations with programme managers at both national and state levels, other research institutes and nongovernmental organizations (NGOs) working to control diarrhoeal diseases.

Although the group of experts systematically reviewed the available data from different sources (research studies, surveys, and government and donor reports), the data used for this exercise were, for reasons of consistency, those reported by the National Diarrhoeal Diseases Control Programme.

The main reason for the persistence of the burden of disease appeared to be that a majority of health care providers were not consistently applying the standard guidelines for management of diarrhoeal diseases, especially those working as private practitioners. Misconceptions about infant and child feeding were widely prevalent and, in many cases, the physician was the person providing inappropriate suggestions. Although the role of antimicrobials is very limited during attacks of diarrhoea, the review revealed that their use had become routine practice. The CAM application highlighted the need for better understanding of socio-cultural norms and training of health care providers.

Individual and community-level information was inadequate but exposure to electronic media had a significant impact on mothers' awareness about oral rehydration treatment and its use. The cost-effectiveness of present and future interventions had not been widely studied in India and so any linkage with sectors other than health was not easy to demonstrate.

Except for the budget of the National Diarrhoeal Diseases Control Programme, no other channel of flow of funds could be studied. India’s public finance accounting framework does not allow for disaggregating between health service spending, personnel costs and money spent for different research initiatives and activities, nor were such data available from donor reports.

For detailed results, see Annex 1 (page 51).

Pakistan’s National Action Plan for noncommunicable disease prevention, control and health promotion

The National Action Plan for noncommunicable disease prevention, control and health promotion in Pakistan is a collaborative initiative of the Ministry of Health, WHO’s Pakistan office and Heartfile* (14). The public-private partnership was mandated to develop an evidence-based, long-term strategic plan of action for achieving national goals for the prevention and control of noncommunicable diseases (NCDs).

The Action Plan, which consists of policy and implementation dimensions, was developed after a situational review was carried out and consultative deliberations were held with a range of stakeholders and NCD experts. A priority-setting workshop for the experts was also held in Islamabad, in which the CAM was introduced as a research priority-setting tool.

* Heartfile is a leading NGO in Pakistan, which has developed the National Action Plan for noncommunicable disease prevention, control and health promotion in Pakistan in collaboration with the Ministry of Health and WHO.
The situational analysis was conducted by:

- Systematically reviewing the available data on current epidemiological evidence
- Summarizing existing strategies and policy measures
- Identifying gaps in the system and the opportunities that exist for integration in existing programmes
- Analysing the potential for programme implementation.

The Action Plan delivers an integrated approach to NCD prevention and control for Pakistan. In this approach, the CAM is used as a first step to priority setting through the organization of information relating to a concerted public health response across a range of NCDs.

The traditional definition of NCDs refers to major chronic diseases, such as cardiovascular disease, diabetes, cancer and chronic respiratory diseases and their risk factors. In Pakistan’s Action Plan, however, NCDs are taken to include mental health and injuries, as it was necessary also to address them within a combined strategic framework through synchronized public health measures.

The CAM was found to be a useful tool for organizing the information needed for making an informed decision, and especially in explaining why NCDs remain a big problem in Pakistan. It thus provided an indication of the priority areas on which future efforts and work should be focused. The CAM uses cost-effectiveness as a yardstick for setting priorities and highlights the need for the generation of such data where they are as yet not available at the local level. However in the interim, public health interventions can be based on the present level of knowledge related to the cost-effectiveness of interventions from best practice examples in the developed world.

For detailed results, see Annex 2 (page 56).

Application of the CAM to a disease

The example of schizophrenia

In spite of the high visibility that mental and neurological health issues have enjoyed internationally since the publication in 1996 of the first burden of disease study (15), there is still a treatment and intervention gap in most developing countries. Because of the neglect and stigmatization of mental and neurological disorders, and the disregard of health behaviour in reducing health risks and promoting behaviour conducive to health, there is little infrastructure in the developing world for research in the fields of mental and neurological health.

It is, therefore, imperative to use optimally scarce research resources in low-income countries and hence engage in evidence-based methods for research priority setting. The Global Forum commissioned a CAM study to set the research priorities in the area of mental health. Two diseases – epilepsy and schizophrenia – were chosen, as examples of neurological and psychiatric disorders respectively.
A senior epidemiologist who was familiar with the application of the CAM methodology carried out desk reviews. The reviews were based on peer-reviewed publications, mostly prepared by WHO, and other similarly authoritative international monographs and reports.

The analysis of the matrices revealed that further research is needed on:

- The concept of burden beyond the individual affected by a neuro-psychiatric disease. Typically, the burden to the family or the caregiver of a patient with a mental or neurological disorder is long-lasting and significant. This is insufficiently reflected in the DALY methodology.
- Cost-effectiveness issues. The effectiveness of many interventions is largely unknown, and good measurements of cost-effectiveness are even less frequent. Cost-effectiveness research needs to consider the issues of burden described above.
- Bridging the treatment gap. In developing countries, many people suffering from mental and neurological disorders do not benefit from the available medicines and treatment methods. Reasons include traditional and cultural concepts such as superstitions and misbelief surrounding the disease and its interpretation, leading to high non-consultation rate in health centres, and hence to a low rate of use of effective drugs; deficiencies in the health system structure; lack of personal and diagnostic facilities; and non-accessibility/availability of efficient means of treatment.
- Overcoming stigmatization and social isolation. This pertains to both afflicted patients and their family and community. It could be reduced by effective health education messages targeting communities, families, individuals and health care providers.

For more detailed results of the study on schizophrenia, see Annex 3 (page 58).

Application of the CAM to a risk factor

The example of indoor air pollution

Indoor air pollution (IAP), which derives mainly from the use of simple biomass fuels (wood, dung and crop wastes) by poor people, is a major public health problem. In low- and middle-income countries, IAP accounts for about 53 million DALYs (or approximately 4% of the total DALYs for these countries) (2), although there are marked variations when comparing countries. It is an important risk factor requiring priority research.

Around three billion people and up to 80% of homes in low- and middle-income countries are still dependent on biofuels for household energy needs. Often used indoors on simple stoves with inadequate ventilation, the practice leads to high levels of indoor exposure, especially for women and young children. Current trends in fuel use and the linkage to poverty indicate that this problem will persist unless more effective action is urgently undertaken. Health and development issues associated with the use of household energy and IAP in low- and middle-income countries include gender issues, poverty, the environment and quality of life. With development, there is generally a transition up the so-called “energy ladder” to fuels that are progressively more efficient, cleaner and convenient, but more expensive.
Households typically use a combination of fuels, for example wood for cooking and heating, some kerosene for lighting and perhaps charcoal for making hot drinks.

While the effects of IAP manifest themselves on health outcomes, the interventions to deal with it are rooted in sectors other than health. This observation led to the application of the CAM to identify gaps in research. Desk reviews were carried out by a senior epidemiologist in order systematically toanalyse the available literature. The studies, based on peer-reviewed publications, were synthesized and the results presented to and discussed by a group of experts.

The results of the exercise showed that applying the CAM in the field of indoor air pollution identified a need for a broad range of multidisciplinary research. This in turn requires coordination and the development of better intersectoral collaboration in research, policy development and implementation; and well developed mechanisms to ensure the dissemination and application of new research knowledge. The following research priorities were identified:

Research to strengthen evidence on population exposure, health effects and potential for risk reduction
- Develop community assessment methods for assessing risk (fuel use, pollution, exposure, household energy systems, etc.) and options for change.
- Develop and test instruments to provide practical and well standardized measures of exposure and health- and development-related outcomes.
- Evaluate direct effects arising from the use of household energy, but not resulting from IAP, including burns, scalds, kerosene poisoning, fires, etc.
- Evaluate less direct health consequences including opportunity costs of women’s time.
- Research to help understand and estimate secondary impacts of interventions on cooking time, fuel gathering and crop production.
- Obtain new evidence on IAP health risks to demonstrate the effect of a measured reduction in exposure on the most important health outcomes.
- Exposure–response relationship of indoor air pollution for key outcomes such as acute lower respiratory infections (ALRI) in young children.

Research on interventions
- Distil and disseminate experience of interventions from existing household energy implementation efforts.
- Conduct an economic assessment of specific interventions.
- Evaluate the impact of new interventions and policy developments on health benefits.
- Identify effective models of collaboration (case studies) in the field of household energy, particularly focusing on communities and households.

Research on the development and implementation of policy
- Conduct economic studies on implemented policies.
- Assess the potential for a household energy policy to address inequalities in health.
- Develop and test standard indicators for routine application in countries.
- Assess national consequences of policy options relating to the supply and uptake of cleaner household energy for the poor.
• Research to understand household benefits of risk reduction using cost-of-illness and willingness-to-pay valuations.

For more detailed results of the CAM application, see Annex 4 (page 61).

Application of the CAM to a vulnerable group

The example of perinatal and neonatal care in Pakistan

The burden of perinatal and newborn mortality in Pakistan is high, and it has been the subject of regular research. Much of the information, however, is not available from representative settings (16). A comprehensive literature and programmatic review of perinatal and newborn health in Pakistan was conducted by the CAM research team.

The available evidence indicated that perinatal mortality rates in Pakistan ranged from 50 to 90 per thousand births. Almost two-thirds of all neonatal deaths take place within the first week of life and overall almost 25% of all neonatal deaths are related to birth asphyxia. The burden of serious newborn infections is substantial with almost 62% of all neonatal deaths resulting from tetanus, sepsis, diarrhoea and pneumonia. While national estimates for low birth weight (LBW) are not available, community-based studies indicate that the rates may be as high as 40% in some rural populations with the overall prevalence rates ranging from 25% to 33%. There is little information on the underlying socio-behavioural determinants of perinatal and newborn mortality, and available information indicates that there are systematic barriers to care-seeking and strong evidence of gender inequity for newborn care.

Annex 5 (page 64) indicates the matrix for this priority-setting exercise with an explanation of the information required for each component. Annex 6 (page 65) lists the summary areas of evidence gaps and further work in Pakistan derived from the information available in Annex 5.

Consultation process

In order to understand the burden, determinants and social dimensions of newborn health and research priorities, a systematic process was followed. This consisted of an in-depth literature review of local and regional data, consultations with experts and researchers in the field and a number of meetings/workshops. Notable among these consultations and expert meetings were:

• A workshop on community-based strategies for perinatal and newborn care (Karachi, February 2002)
• A national consultation on priorities for maternal and child health in Pakistan (Islamabad, January 2003)
• A consultation on priorities for child health research, held at the Pakistan Medical Research Council (PMRC) Child Health Center (Karachi, August 2003)
• A discussion on maternal and newborn care strategy at the National Committee for Maternal Health (Karachi, October 2003)
• A symposium on newborn care in Pakistan (Islamabad, November 2003)
• National consultation on nutrition status and strategy in Pakistan (Karachi, December 2003)
- A national micronutrient strategy development meeting (Islamabad, January 2004)
- A symposium on newborn care with the Pakistan Paediatric Association and national neonatal group (Lahore, February 2004).

In addition, several informal consultations were undertaken with groups working on maternal and child health in Pakistan including Saving Newborn Lives (SNL), UNICEF, WHO Pakistan, the Department for International Development (DFID) and USAID. The team also reviewed the reports on the situational analysis of newborn care in Pakistan (SNL 2002) and the health systems’ policy review for perinatal care undertaken with funding from the Alliance for Health Policy and Systems Research in 2002.

While all sections of the CAM were not systematically completed at all the meetings, the core group working on the project was able to address all areas through consultations held between August 2003 and February 2004. A dual listing system was used to analyse evidence gaps. Gaps were first listed and then a qualitative assessment of gaps was undertaken, classifying the levels of evidence on a numerical grid as follows:

- **1 = Sufficient data available**
- **2 = Some data available**
- **3 = Insufficient data (need for more research)**
- **4 = No information/Critical gap/High-priority research.**

Areas marked 3 or 4 would be the principal focus of research as information needs were both immediate and constrained interventions.

Guided by the available information on perinatal and newborn morbidity and mortality in Pakistan, the following key areas were identified for an in-depth analysis using the CAM:

- Birth asphyxia
- LBW including prematurity and intrauterine growth retardation (IUGR)
- Serious neonatal infections.

Conclusions: the context of research in newborn care (evidence gaps and proposed initiatives)

The data reviewed highlighted the urgent need to assess objectively the burden of mortality and morbidity pertaining to the neonatal period. These data must be derived from well designed community-based studies and reflect the diversity within Pakistan’s population.

The socio-cultural and behavioural aspects of newborn care by family members and other care-providers were considered an important area requiring much formative research. This is important prior to the institution of any interventions, especially those involving behaviour change. Given the widespread ignorance of appropriate newborn feeding, thermoregulation, skin care and asepsis, these were identified as priority areas for research.

In view of LBW rates in many communities, the results revealed that the biggest challenges were to improve strategies for LBW prevention and postnatal care. A
better and holistic evaluation of risk factors for LBW is required from well conducted, representative studies carried out in the communities.

In Pakistan, most births take place at home, frequently with the help of traditional and untrained birth attendants. The CAM’s results emphasized that identifying ways of optimizing viable opportunities for newborn care should be considered a priority research area. One suggested option was working with trained birth attendants and lady health workers for improved intrapartal and postnatal care of the mother and newborn. These may include methods for basic newborn resuscitation, care of the LBW infant, infection prevention and basic treatment through community health workers. Collaborating with lady health workers in these initiatives shows considerable promise, and this may be a major area for research.

In summary, the CAM allowed a systematic analysis and evaluation of the available evidence on perinatal and newborn care in Pakistan. The exercise allowed an evaluation of the existing evidence and evidence gaps with regards to the burden of disease, basic determinants and the policy framework of the Ministry of Health and other departments of the government of Pakistan.
1. The lessons

In order to be credible and acceptable, and to serve as a basis for priority setting at national or international levels, the information presented by a priority-setting tool needs to be reliable. The strength of the CAM is its flexibility and diversity of application. Depending on the resources, area of research and availability of the required information, it may be applied by an individual researcher, a group of experts, interested stakeholders or a combination of all of them, as illustrated by the examples in the previous section.

The CAM provides a conceptual framework for compiling information relevant for priority setting in health research. More important, it is a practical and standardized tool for data presentation, and for improving transparency of rational decision-making in the priority-setting process. The method requires that very often complex information and knowledge be condensed to fit into a cell of the CAM. Experts with a profound knowledge of a specific disease may find it difficult and unacceptable to be forced to reduce the pertinent scientific literature to a few key sentences. Critics may consider this oversimplification lacking the necessary rigour for an analysis of the situation. Others, however, accept this limitation as a challenge to focus only on the essentials and to refrain from stating what cannot be expressed concisely.

The last two steps in priority setting concern the cost-effectiveness of future interventions and the resource flows for the disease/risk factor under consideration. Most investigators found it difficult to trace such information. In fact, apart from occasional studies pertaining to the health system and health services research, such information rarely exists. This, however, cannot be interpreted as a shortcoming of the CAM, but rather as an outcome of the priority-setting exercise pointing towards data required for priority research.

The focus for health research priority setting is not restricted to technical questions about the status of the disease (or risk factor), but draws attention to the various domains where interventions are possible and desirable (from the household to global macroeconomic policies). Most health professionals and decision-makers may well be aware of this in a general sense, but by applying the CAM it becomes obvious in most situations that the health status of a population broadly depends on many sectors of society and not only on the actions (or omissions) of the health services.

Application of the CAM reveals clearly that there is much more knowledge available than is actually applied. It shows that, in spite of the existence of many cost-effective interventions, a huge treatment gap (i.e. the difference in the rates between those who need and those who actually benefit from such treatment) exists, that the reasons for the persistence of a health problem may be outside the health sector and that, if there are obstacles within the health sector, they may be of a non-medical nature (such as socio-cultural distance between health care providers and clients).

These findings help to emphasize that, apart from basic medical research, other types of research are needed in order to change a population’s health status for the better.
research on risk factors, health service research, operational research, research on policies and research on priority-setting methodologies.

The CAM has proven an extremely useful tool in situations where a cluster of conditions or diseases results in a health problem. For example, the application of CAM for mental disorders such as depression and schizophrenia will provide information not only to set priorities for these diseases but also for the overall burden of mental disorders.
2. Challenges and opportunities

Compiling the data and information required to complete the CAM is a challenging exercise for several reasons. Some investigators found it difficult to access appropriate information from representative settings and, in some cases, it was difficult to verify the veracity and validity of existing data. Limited institutional memory at the level of policy-makers in terms of experience of interventions and programmes was considered an obstacle while setting national research priorities. The information required is not restricted to technical questions about the status of the disease/risk factor and research, but also demands awareness, knowledge and analysis of the factors determining health at the various levels (from the individual and the family to macroeconomic policies). Although this is considered a major advantage of the method, in that it forces the users to think broadly and inclusively, it may not always be easy to find disease control experts who have the relevant skills or knowledge.

In some situations, while the CAM provided a good solid base for the necessary information, it required adaptation to the particular needs of the programme or organization. CAM users have to modify and adapt the outcome of the CAM results according to their organizational needs. Two excellent examples in this regard are the use of the CAM by the TDR and the Pakistan Medical Research Council for perinatal and neonatal care in Pakistan. Such adaptation needs to be continuous as the debate on priority setting moves forward.

Disease research strategies need to be revised and updated, as new results become available. This will be almost continuous in diseases such as malaria and HIV/AIDS for which research is ongoing. The priority-setting process is therefore iterative and should not be set in stone.

Another observation from a national team was that the CAM approach compelled them to think nationally and focus institutionally. Also, many considered that the whole process of CAM application provides an opportunity to develop capabilities, strengthen capacities, enhance skills and improve knowledge in the field of health research priority setting.
3. Conclusions

The CAM methodology provides the evidence base for priority setting in health research; it is not, however, a method that produces the priorities themselves. It can hardly be expected that there will ever be a procedure or an algorithm that automatically comes up with research priorities if the evidence base is somehow fed into the process. One would hope, however, that standardized guidelines might become available which will facilitate priority selection on the basis of the CAM.

Priority setting in health research is a dynamic process. It is realistic to expect that methods and instruments, such as the CAM, designed to facilitate this process at country, regional and global levels will be further developed, and that answers will be found to the present gaps and limitations with the help of partners in the health research world.
Section V

ANNEXES
Annex 1

Diarrhoeal diseases research in India: application of the CAM

<table>
<thead>
<tr>
<th>The individual, household and community</th>
<th>Health ministry and other health institutions</th>
<th>Sectors other than health</th>
<th>Macroeconomic policies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Disease burden</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Globally, diarrhoeal disease was responsible for 4.3% of total loss of DALYs, and >2 million deaths (3.5% of all deaths) in 2001.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• In India, diarrhoeal disease is a major public health problem among children under 5 years of age. In health institutions, up to a third of total paediatric admissions are due to diarrhoeal diseases and up to 17% of all deaths in paediatric inpatients are related to diarrhoea.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• The mean incidence of diarrhoea in India was 1.5 episodes per child per year in urban areas and 4.7 in rural areas; this figure was 10.5 in the slum areas around the major towns in India.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• In India, 20% of deaths among children under 5 years of age were estimated to be due to diarrhoeal diseases. Globally, similar estimates (21%) were also reported for children under 5.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• In the Andhra Pradesh disease burden study in India, diarrhoeal diseases were the sixth leading cause of lost DALYs in rural areas and the tenth leading cause in urban areas (based on community-rated disability weights; ranks were higher using expert-rated disability weights).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• In India, case-fatality from diarrhoeal diseases among children under 6 years of age was estimated to be 0.56% for acute watery diarrhoea, 4.27% for dysentery and 11.94% for non-dysenteric persistent diarrhoea. Globally, the overall estimate of case-fatality from diarrhoea among under-5 children was estimated to be 0.15% (1.8% among children less than 1 year of age).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Determinants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Ignorance about nature of diarrhoeal disease and its modes of transmission</td>
<td>1. Problems associated with quality of health services</td>
<td>1. Inappropriate housing</td>
<td>1. Insufficient linkage across sectors</td>
</tr>
<tr>
<td>1.1 Inadequate maintenance of personal hygiene</td>
<td>1.1 Inappropriate advice regarding infant and child feeding practices</td>
<td>2. Insufficient education</td>
<td>1. Lack of proper linkage between health and other development sectors</td>
</tr>
<tr>
<td>1.2 Inappropriate care-seeking behaviour and practices</td>
<td>1.2 Irrational use of drugs for treatment of diarrhoea</td>
<td>3. Inadequate safe water supply and sanitation systems</td>
<td>2. Government expenditure on health and allied programmes</td>
</tr>
<tr>
<td>1.3 Insufficient knowledge about water treatment, storage and handling at the household/community level</td>
<td>1.3 Lack of adherence to control programme’s guidelines while managing the cases</td>
<td>4. Social unrest at some places</td>
<td>2.1 Government spending in health programmes has not increased over last several years</td>
</tr>
<tr>
<td>1.4 Lack of knowledge about proper infant and child feeding practices, including breastfeeding and weaning</td>
<td>2. Lack of well-established surveillance system in most areas</td>
<td>5. Population movements within and across borders</td>
<td>3. Lack of sustained political commitment</td>
</tr>
<tr>
<td>1.5 Inadequacy of proper sanitation and waste (including excreta) disposal systems and insufficient knowledge about their importance</td>
<td>2.1 Surveillance to detect occurrence of diarrhoea cases including outbreaks, determining major pathogens in the area, changes in drug susceptibility for major organisms, detecting newer pathogens etc.</td>
<td></td>
<td>4. Persistence of huge rural/urban disparities in socioeconomic conditions and health care services</td>
</tr>
<tr>
<td>2. Environmental changes leading to higher transmission potential of diarrhoeagenic pathogens</td>
<td>2.2 Surveillance in health care institutions to prevent and address problems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1 Congested and unplanned housing without adequate system for safe water supply and sanitation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2 Appearance of newer pathogens/strains with potential to cause life-threatening diarrhoea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3 Increasing problem of drug resistance for several diarrhoeagenic pathogens</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Annex 1: Diarrhoeal diseases research in India: application of the CAM

<table>
<thead>
<tr>
<th>3. Present level of knowledge</th>
<th>The individual, household and community</th>
<th>Health ministry and other health institutions</th>
<th>Sectors other than health</th>
<th>Macroeconomic policies</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Interventions currently available</td>
<td>1. Prevention of infection</td>
<td>detect occurrences of nosocomial diarrhoea</td>
<td>2. Prevention of disease progression among the infected</td>
<td>1. Appropriate housing</td>
</tr>
<tr>
<td></td>
<td>1.1 Maintenance of personal hygiene</td>
<td>3. Lack of infrastructure to isolate and characterize many relevant organisms</td>
<td>1. National Diarrhoeal Diseases Control Programme</td>
<td>1. Placing diarrhoeal diseases among top priority health concerns</td>
</tr>
<tr>
<td></td>
<td>1.2 Proper water treatment, storage and handling at household and community levels</td>
<td>4. Lack of appropriate health information system</td>
<td>1.1 Promotion of ORT</td>
<td>2. Promoting awareness of the problem and action</td>
</tr>
<tr>
<td></td>
<td>1.3 Maintenance of food hygiene</td>
<td>4.1 Lack of collection of data on morbidity and mortality (especially pathogen-wise break-up) in a systematic way</td>
<td>1.2 Integration of the programme with PHC up to the lowest government health care level</td>
<td>2.2 Appropriate planning for development projects</td>
</tr>
<tr>
<td></td>
<td>1.4 Special attention to childcare practices</td>
<td>4.2 Lack of dissemination of information to all desired levels</td>
<td>1.3 Health education of the people, including free distribution of health education booklets in regional languages</td>
<td>2.3 Environmental impact assessment for proposed development projects (e.g. water pollution)</td>
</tr>
<tr>
<td></td>
<td>1.4.1 Child feeding practices, specially breastfeeding and weaning practices</td>
<td>4.3 Lack of timeliness in gathering and disseminating data</td>
<td>1.4 Training of physicians on rational management of diarrhoea</td>
<td>3. National Water Supply and Sanitation Programme</td>
</tr>
<tr>
<td></td>
<td>1.4.2 Regular deworming of children</td>
<td></td>
<td>1.5 Establishment of diarrhoea treatment and training units (DTUs) at medical colleges and district hospitals</td>
<td>4. Literacy mission and health education programmes, including application of mass media</td>
</tr>
<tr>
<td></td>
<td>1.4.3 Child immunization</td>
<td></td>
<td></td>
<td>5. Epidemic preparedness and disaster management programmes</td>
</tr>
<tr>
<td></td>
<td>1.4.4 Supplementation of micronutrients (e.g. zinc)</td>
<td></td>
<td></td>
<td>6. Programmes to alleviate poverty (e.g. PMRY, JRY, financial assistance from banks)</td>
</tr>
<tr>
<td></td>
<td>1.5 Safe waste (including excreta) disposal system at household and community levels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.6 Antimicrobial prophylaxis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Prevention of disease progression among the infected</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1 Use of oral rehydration therapy (ORT)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2 Continued feeding, including breastfeeding for breastfed children</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.3 Antibiotics, if appropriate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.4 Timely seeking of health care</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5 Compliance with prescribed drugs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Present level of knowledge</td>
<td>3.1 Poverty</td>
<td>3.1 National diarrhoeal diseases control programme</td>
<td>3.1 Placing diarrhoeal diseases among top priority health concerns</td>
</tr>
<tr>
<td></td>
<td>3.2 Low literacy</td>
<td>3.2 Lack of infrastructure to isolate and characterize many relevant organisms</td>
<td>1.6 Establishing diarrhoea treatment and training units (DTUs) at medical colleges and district hospitals</td>
<td>2.2 Promoting awareness of the problem and action</td>
</tr>
<tr>
<td></td>
<td>3.3 Adverse cultural beliefs and taboos</td>
<td>4. Lack of appropriate health information system</td>
<td></td>
<td>2.3 Environmental impact assessment for proposed development projects (e.g. water pollution)</td>
</tr>
<tr>
<td></td>
<td>3.4 Socioeconomic disruption due to natural disasters (e.g. flood, famine, etc.)</td>
<td>4.1 Lack of collection of data on morbidity and mortality (especially pathogen-wise break-up) in a systematic way</td>
<td></td>
<td>3. National Water Supply and Sanitation Programme</td>
</tr>
<tr>
<td></td>
<td>4. Public distrust over quality of existing government health services</td>
<td>4.2 Lack of dissemination of information to all desired levels</td>
<td></td>
<td>4. Literacy mission and health education programmes, including application of mass media</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.3 Lack of timeliness in gathering and disseminating data</td>
<td></td>
<td>5. Epidemic preparedness and disaster management programmes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6. Programmes to alleviate poverty (e.g. PMRY, JRY, financial assistance from banks)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Socioeconomic influences

3.1 Poverty

- Maintenance of personal hygiene
- Proper water treatment, storage and handling at household and community levels
- Maintenance of food hygiene
- Special attention to childcare practices
 - Child feeding practices, specially breastfeeding and weaning practices
 - Regular deworming of children
 - Child immunization
 - Supplementation of micronutrients (e.g. zinc)
- Safe waste (including excreta) disposal system at household and community levels
- Antimicrobial prophylaxis

3.2 Low literacy

- Maintenance of personal hygiene
- Proper water treatment, storage and handling at household and community levels
- Maintenance of food hygiene
- Special attention to childcare practices
 - Child feeding practices, specially breastfeeding and weaning practices
 - Regular deworming of children
 - Child immunization
 - Supplementation of micronutrients (e.g. zinc)
- Safe waste (including excreta) disposal system at household and community levels
- Antimicrobial prophylaxis

3.3 Adverse cultural beliefs and taboos

- Maintenance of personal hygiene
- Proper water treatment, storage and handling at household and community levels
- Maintenance of food hygiene
- Special attention to childcare practices
 - Child feeding practices, specially breastfeeding and weaning practices
 - Regular deworming of children
 - Child immunization
 - Supplementation of micronutrients (e.g. zinc)
- Safe waste (including excreta) disposal system at household and community levels
- Antimicrobial prophylaxis

3.4 Socioeconomic disruption due to natural disasters (e.g. flood, famine, etc.)

- Maintenance of personal hygiene
- Proper water treatment, storage and handling at household and community levels
- Maintenance of food hygiene
- Special attention to childcare practices
 - Child feeding practices, specially breastfeeding and weaning practices
 - Regular deworming of children
 - Child immunization
 - Supplementation of micronutrients (e.g. zinc)
- Safe waste (including excreta) disposal system at household and community levels
- Antimicrobial prophylaxis

Public distrust over quality of existing government health services

- Lack of infrastructure to isolate and characterize many relevant organisms
- Lack of appropriate health information system
 - Lack of collection of data on morbidity and mortality (especially pathogen-wise break-up) in a systematic way
 - Lack of dissemination of information to all desired levels
 - Lack of timeliness in gathering and disseminating data

Macroeconomic policies

- Appropriate housing
- Environmental management
 - Adequate and safe water supply and sanitation
 - Appropriate planning for development projects
- National Diarrhoeal Diseases Control Programme
 - Promotion of ORT
 - Integration of the programme with PHC up to the lowest government health care level
- National Water Supply and Sanitation Programme
- Literacy mission and health education programmes, including application of mass media
- Epidemic preparedness and disaster management programmes
- Programmes to alleviate poverty (e.g. PMRY, JRY, financial assistance from banks)
- Involving other government and non-government agencies
- Decentralization process to address rural/urban disparities
- Legal amendments to deal with growing pollution and inappropriate use of drugs
| 3. Health education about relevant aspects for preventing diarrhoea/dehydration | 3. Early diagnosis and treatment of affected individuals |
| 3.1 Recommended management guidelines |
| 3.2 Provision of case management at all levels of government health care |
| 3.3 Involvement of private medical practitioners |
| 3.4 Isolation and drug susceptibility testing of diarrhoeagenic pathogens |
| 4. Health education |
| 5. Early detection, containment or prevention of outbreaks/epidemics |

| 7. Rural housing schemes (Indira Vikas Yojana) |

3.2 How cost-effective are current interventions? (refer to numbers under 3.1)

| 1.1 Cost-effective to reduce occurrence of diarrhoea |
| 1.2 Cost-effective |
| 1.3 Cost-effectiveness not established |
| 1.4.1 Cost-effective |
| 1.4.2 Cost-effectiveness studies are needed for routine anthelmintic treatment of preschool children |
| 1.4.3 Overall, routine immunization of children is one of the most cost-effective approaches to prevent illnesses; cost-effectiveness specifically for prevention of diarrhoeal diseases not established |
| 1.4.4 Cost-effectiveness of different strategies for delivering zinc supplement needs to be assessed |
| 1.5 Cost-effective |
| 1.6 Not cost-effective, except in some special circumstances |
| 2.1 One of the most cost-effective health care interventions ever |
| 2.2 Cost-effective to reduce morbidity and mortality from childhood diarrhoea |
| 2.3 Cost-effective only in select cases |
| 3. Cost-effective |
| 1. One of the most cost-effective health care interventions ever |
| 1.2-1.4 Cost-effective approaches |
| 1.5 Establishment of DTUs are a cost-effective strategy for promotion of appropriate case management of diarrhoeal diseases, thus reducing burden of diarrhoeal disease |
| 3.1-3.3 Cost-effective |
| 3.4 Routine culture of stool or routine application of other detection techniques for community-acquired diarrhoea may not be cost-effective |
| 4. Cost-effective |
| 5. Cost-effectiveness of routine surveillance system is not known |

| 1. Cost-effectiveness not known |
| 2.1 Some water supply and sanitation intervention programmes are very cost-effective in controlling childhood diarrhoea; may be as cost-effective as ORT |
| 2.2-2.4 Cost-effectiveness not known |
| 3. Cost-effective strategy to control diarrhoeal disease burden |
| 4. Cost-effective |
| 5. Cost-effectiveness not known |
Annex 1: Diarrhoeal diseases research in India: application of the CAM

<table>
<thead>
<tr>
<th>4. Cost and effectiveness</th>
<th>The individual, household and community</th>
<th>Health ministry and other health institutions</th>
<th>Sectors other than health</th>
<th>Macroeconomic policies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Community participation in planning and evaluation would be an effective approach to control the disease</td>
<td>1. Involvement of both licensed and unlicensed health care providers in training on rational management of diarrhoea</td>
<td>1. Involvement of private sectors and NGOs, women’s groups and community organizations in spreading messages about diarrhoea and its control; cost-effectiveness may be difficult to measure</td>
<td>1. Set priorities for diarrhoeal diseases research and allow sufficient budgetary allocation to deal with this continuing public health problem</td>
</tr>
<tr>
<td></td>
<td>2. Promoting use of inexpensive yet effective methods for water disinfection and storage at the household and community levels is a proven cost-effective intervention</td>
<td>2. Bringing out newer ORS formulations through research → some newer ORS (e.g. rice-based ORS already proved its efficacy, though its widespread use is limited by non-availability of a packaged product for some practical difficulties; research is under way to overcome these difficulties)</td>
<td>2. Carefully planned communications strategy involving the coordinated use of mass media, market research and evaluation, relying on a multiplicity of channels for communication that is culturally appropriate</td>
<td>2. Seek resources from national and international agencies which could be utilized for this health problem from the country’s perspective</td>
</tr>
<tr>
<td></td>
<td>3. Raising awareness about diarrhoea and its management within the community (especially among mothers) through innovative ways (e.g. educating parents through their children who are taught in an interesting way about these aspects in school; educating people through teachers, etc.) may prove an effective strategy</td>
<td>3. Newer diagnostic methods to identify pathogens using modern laboratory technologies → but, too much effort on identifying pathogens, especially for cases of community-acquired diarrhoea, may not be a cost-effective approach</td>
<td>3. Greater use of electronic mass media to spread relevant messages in local languages – effective for the vast population of illiterates and semi-literates, as even among them more and more people are gaining access to radio, television etc.</td>
<td>3. A revised National Health Policy addressing the prevailing rural/urban inequalities in delivery of health services is imperative</td>
</tr>
<tr>
<td></td>
<td>4. Involvement of both licensed and unlicensed health care providers in training on rational management of diarrhoea</td>
<td>4. Evaluation and monitoring of drug resistance pattern for major pathogens and identifying suitable/newer antimicrobials to treat them → treatment for diarrhoea with antimicrobials is indicated only in very selective cases</td>
<td>4. Evaluation and monitoring of drug resistance pattern for major pathogens and identifying suitable/newer antimicrobials to treat them → treatment for diarrhoea with antimicrobials is indicated only in very selective cases</td>
<td>4. Optimal collaboration needed among different related national programmes (e.g. National Water Supply and Sanitation Programme)</td>
</tr>
<tr>
<td></td>
<td>5. Raising awareness about diarrhoea and its management within the community (especially among mothers) through innovative ways (e.g. educating parents through their children who are taught in an interesting way about these aspects in school; educating people through teachers, etc.) may prove an effective strategy</td>
<td>5. Development of vaccines against major causative agents → efforts are on for many organisms (e.g. cholera, shigella, rotavirus); they could be cost-effective but subject to some conditions apart from</td>
<td>5. Evaluation of existing programmes</td>
<td>5. Evaluation of existing programmes</td>
</tr>
</tbody>
</table>
5. Resource flows

| 1. Individual and community efforts to prevent and control diarrhoeal diseases |
| 2. Involvement of prominent social figures (e.g. actors/actresses, social workers) and opinion leaders (e.g. ministers, members of parliament, etc.) in raising awareness |
| 3. Organization of camps, meetings, demonstrations etc. |
| 4. Distribution of halogen tablets, bleaching powders etc. by community leaders and organizations |

| 1. Funds and resources allocation under National Diarrhoeal Diseases Control Programme |
| 2. Resources (funds, equipment, infrastructure building) for diarrhoeal diseases research and training from government and non-government agencies, as well as from international agencies |

| 1. Gaining positive impact on diarrhoeal diseases control through resources spent on National Water Supply and Sanitation Programme |
| 2. Sulabh International, a private organization, has been engaged in building public toilets for more than 25 years in different parts of the country |
| 3. Involvement of government, mass media and NGOs in spreading appropriate messages |
| 4. Improving child health through different government and non-government programmes (e.g. Integrated Child Development Services) |

| 1. Collaborative efforts and partnerships with international organizations such as WHO, UNICEF, Japan International Cooperation Agency to fight against this menace |
| 2. Collaboration among various national and international agencies for development and testing of vaccines against cholera, rotavirus etc. |
| 3. Obtaining support from international agencies (e.g. World Bank) to develop and expand health care infrastructure |

Source: Indian Medical Research Council
Annex 2

Pakistan’s National Action Plan for noncommunicable disease prevention and control:
application of the CAM

<table>
<thead>
<tr>
<th>The individual, household and community</th>
<th>Health ministry and other health institutions</th>
<th>Sectors other than health</th>
<th>Macroeconomic policies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Disease burden</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noncommunicable diseases (NCDs) and injuries are amongst the top ten causes of mortality and morbidity in Pakistan; estimates indicate that they account for approximately 25% of deaths within the country. Existing population-based morbidity data on NCDs in Pakistan shows that one in three adults over the age of 45 years suffers from high blood pressure; the prevalence of diabetes is reported at 10%; and 54% men and 20% women use tobacco in one form or another. Karachi reports one of the highest incidences of breast cancer for any Asian population, with an ASR of 53.1; in addition, estimates indicate that there are 1 million severely mentally ill and more than 10 million individuals with neurotic mental illnesses within the country. Furthermore, the incidence of injuries has been reported at 41.2 per 1 000 persons per year.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| **2. Determinants** | | | |
| 1. Lack of awareness about the risks of NCDs and the consequent adoption of detrimental practices: unhealthy diet, sedentariness, stress, use of tobacco, passive exposure to smoke, use of areca nut, indoor air pollution; dangerous driving, commuting practices and pedestrian behaviours |
| 2. Inappropriate care-seeking behaviour and practices, e.g. screening for risk status |
| 3. Noncompliance with drug treatment |
| 4. Poor access to health care and to skilled health care providers |
| 5. Lack of a conducive physical and social environment for physical activity, particularly for women |
| 6. Issues with accessibility to a healthy diet |

1. Lack of inclusion of NCDs as part of the national health policy
2. Lack of a concerted public health response to the issue
3. Lack of integrated surveillance systems to enable an ongoing assessment of NCDs and their determinants.
4. Lack of coordination between data providers and users
5. Lack of longitudinal cohort studies to measure population-specific causal associations, which could be the target for preventive interventions.
6. Lack of clinical end-point trials in the native Pakistani setting which could set optimal targets for therapeutic interventions in primary and secondary prevention settings
7. Persistent focus of the diet and nutrition policy on undernutrition
8. Lack of resource-sensitive, scientifically valid training programmes for all categories of health care providers focusing on NCD prevention and control
9. Lack of integration of NCD prevention with primary health care
10. Lack of policy and operational research around tobacco
11. Lack of recognition of the magnitude and scale of NCDs and their economic implications.
12. Lack of efforts to assess agricultural and fiscal policies relating to food items that could have implications for increasing the demand for, and making of, healthy food more accessible
13. Lack of policies and strategies to limit production of and access to ghee as a medium for cooking
14. Lack of efforts to institute measures to reduce dependence on revenues generated from tobacco
15. Lack of measures to discourage tobacco cultivation and assist with crop diversification
16. Lack of effective legislative measures, which stipulate standards for urban planning
17. Lack of comprehensive efforts aimed at banning tobacco advertisements
18. Lack of efforts to develop a comprehensive price policy for tobacco products
19. Lack of legislation on areca nut
20. Lack of appropriate regulatory measures to reduce exposure to risk in industrial settings
21. Lack of efforts to explore the feasibility of utilizing open spaces and playgrounds (e.g. in schools) for physical activity
22. Lack of regulatory bodies to ensure “safety” in

1. Lack of sustained political commitment
<table>
<thead>
<tr>
<th>3. Present level of knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td>The present level of knowledge related both to the determinants of persistence of disease and</td>
</tr>
<tr>
<td>effectiveness of prevention and control measures is largely based on evidence drawn from the</td>
</tr>
<tr>
<td>developed world. This needs further exploration in the indigenous Pakistani setting.</td>
</tr>
<tr>
<td>Same as 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. Cost and effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>The present level of knowledge related to cost-effectiveness of interventions has been drawn</td>
</tr>
<tr>
<td>from best practice examples in the developed world. This needs further exploration in the</td>
</tr>
<tr>
<td>indigenous Pakistani setting.</td>
</tr>
<tr>
<td>Same as 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. Resource flows</th>
</tr>
</thead>
<tbody>
<tr>
<td>No information is available.</td>
</tr>
</tbody>
</table>

Source: Pakistan Medical Research Council
Annex 3
Schizophrenia: application of the CAM

<table>
<thead>
<tr>
<th>1. Disease burden</th>
<th>The individual, household and community</th>
<th>Health ministry and other health institutions</th>
<th>Sectors other than health</th>
<th>Macroeconomic policies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Globally 15,686,000 DALYs lost, which is 1.07% of total global burden of disease</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Determinants

- There is no proven method of primary prevention of schizophrenia
- Biological risk factors include:
 - Genetic vulnerability (polygenic); heritability 69%–80%
 - Early developmental insults (LBW; perinatal brain damage; early neuroinfection)
- Environmental/psychosocial risks
 - Urban birth
 - Stigma
 - Social isolation
- High co-morbidity (e.g. substance misuse)
- There is no cure for schizophrenia
- Insufficient recognition in treatment programmes that level of burden is shaped by interaction between intrinsic vulnerabilities caused by the disease and the psychosocial environment
- Hospitalization with the aim of removing people with schizophrenia from public places or facilities, or otherwise restricting their freedom
- Severe adverse effects of antipsychotic drugs (neurological extrapyramidal effects), interfering with psychosocial and vocational adjustment, lead to non-compliance with medication and contribute to stigma.
- Treatment gap in developing countries: 67% or 17 million patients are not receiving treatment
- Lack of specialists and general health workers with the knowledge and skills to manage schizophrenia across all levels of care
- Lack of resources
- Stigmatizing environment (including workplace)
- Mental health legislation inadequate or absent
- Neglect of the large number of patients who have lost their supportive network and are homeless, vagrant or in prison
- Poor coordination between services including non-health sector
- Insufficient awareness of the size of the problem and the existence of cost-effective interventions capable of reducing the burden of the disease
- Lack of a coherent mental health policy

3. Present level of knowledge

- In contrast to prevention, there is sufficient knowledge of interventions that can substantially ameliorate the course of schizophrenia and reduce the resulting impairments and disabilities
- Formulation of mental health policy (e.g. as part of health sector reforms)
- Mental health awareness programmes (e.g. declaration of a mental health day)
- Community-based management programmes involving at least three operational components:
- Pharmacological treatment aimed at symptom control in acute episodes, maintenance of stabilization and prevention of relapse, and means of ensuring adherence to treatment protocol
- Mobilization of family and community support, including provision of education about the nature of schizophrenia and its treatment, involving the family in simple problem-solving skills training and involving the local community in providing a supportive and non-stigmatizing environment
- Local rehabilitation, such as maintaining the patient in appropriate work and social roles within the community, and creating opportunities for occupational and social skills training
 - Many of the psychological approaches have not been evaluated by economists, nor have the newest atypical antipsychotics
 - There are few if any evaluations of specific combinations of pharmacological and psychological therapies.
 - There is little evidence of the economic consequences of side-effects or non-compliance, yet one would suspect these to be important drivers of long-term costs.
 - Research findings point to areas where cost savings may be achieved in principle, but they may not lead to cost savings in practice: with the growth of community-based care involving multiple agencies with their own budgets and their own ways of working, there is little evidence about the incentives and constraints that might help or hinder integrated responses to schizophrenia

<table>
<thead>
<tr>
<th>Reduction of stigma</th>
<th>Antipsychotic medication (conventional antipsychotics (e.g. phenothiazines) and atypical antipsychotics (e.g. clozapine))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection of patient’s human rights</td>
<td>Cognitive-behavioural therapy for psychotic symptoms</td>
</tr>
<tr>
<td>Prevention of premature mortality (e.g. suicide)</td>
<td>The primary health care model</td>
</tr>
<tr>
<td>Prevention of criminal and offending behaviour</td>
<td>Family interventions</td>
</tr>
<tr>
<td>Skills training and illness self-management</td>
<td>Group interventions focused on the patient</td>
</tr>
<tr>
<td>Therapeutic communities</td>
<td>Antipsychotic medication: conventional drugs are effective and inexpensive (chlorpromazine) but cause severe adverse effects. Atypical drugs cause fewer adverse effects, but are more expensive. Cost-effectiveness studies of conventional vs. atypical</td>
</tr>
<tr>
<td>Short-term hospitalization for acute care in accordance with ethical guidelines by international bodies, such as WHO</td>
<td>Supported employment approach to vocational rehabilitation</td>
</tr>
<tr>
<td></td>
<td>Non-stigmatization programmes</td>
</tr>
<tr>
<td></td>
<td>Mental health legislation</td>
</tr>
<tr>
<td></td>
<td>Consumer empowerment</td>
</tr>
</tbody>
</table>
Annex 3: Schizophrenia: application of the CAM

<table>
<thead>
<tr>
<th></th>
<th>The individual, household and community</th>
<th>Health ministry and other health institutions</th>
<th>Sectors other than health</th>
<th>Macroeconomic policies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>antipsychotics originate in developed world. To achieve universal availability at low cost conventional antipsychotics are clearly to be preferred (until current atypicals come off-patent)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Cost and effectiveness</td>
<td>• Research capacity building through on-site education, exchange programmes and distance learning</td>
<td>• Development of local networks that link centres with the requisite expertise to their surrounding community, and creation of regional networks linking such centres through joint training programmes, staff exchanges and collaborative research</td>
<td>• Partnerships between lead institutions in high-income countries and such collaborative networks in low-income countries</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Research into the aetiology of schizophrenia, particularly genetic epidemiology, neurobiology</td>
<td>• Research into interactive interventions involving the patient, the family and the community, cognizant of the fact that biological vulnerability and environmental influences interact and potentiate each other at every stage of schizophrenia (treatment, stabilization and residual)</td>
<td>• Research into preventive intervention, e.g. through early detection and avoidance of treatment delay</td>
<td></td>
</tr>
<tr>
<td>5. Resource flows</td>
<td>No information is available.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Global Forum for Health Research
Annex 4
Indoor air pollution (IAP): application of the CAM

<table>
<thead>
<tr>
<th>The individual, household and community</th>
<th>Health ministry and other health institutions</th>
<th>Sectors other than health</th>
<th>Macroeconomic policies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Disease burden</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4% of the global burden of disease.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Determinants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poverty: Individuals, including gender-related; family; population (including effects of drought, war, debt, etc.).</td>
<td>Ministry: lack of awareness, hence weak health policy response; inadequate collaboration with other sectors.</td>
<td>Development/civil society organizations (CSOs): Focus has been on technology for energy conservation and cost saving.</td>
<td>Awareness: Lack of awareness of health impacts of indoor air pollution specifically and more generally of interrelationships between household energy, gender, health and development.</td>
</tr>
<tr>
<td>Awareness: lack of awareness of health risks and/or options for change.</td>
<td>Research institutions: Relatively low priority as health research issue; limited funding; lack of population surveys of exposure (health risk); exposure assessment difficult in settings where problem is worst (cost, technical expertise required).</td>
<td>Non-health ministries: Environment, housing, etc., tended to operate in own fields without collaboration with health CSOs.</td>
<td>Policy: Lack of policy and strategy to address household energy and poverty, consequently minimal capacity.</td>
</tr>
<tr>
<td>Culture: Preferences, e.g. for taste of food cooked on biofuel stove; uses of smoke, e.g. food preservation; spiritual issues relating to hearth.</td>
<td>Health systems: Focus on case finding and treatment; uncertain about role in reducing environmental exposure; lack of mechanisms and experience for collaboration with other sectors.</td>
<td>Donors: Projects often driven and funded by donors, rather than being participatory and market-led.</td>
<td>Economic: Distortions in energy sector, fuel subsidy policy not benefiting the poor.</td>
</tr>
<tr>
<td>Access: Limited access to cleaner fuels and appliances due to poverty, and inadequate or unreliable supply.</td>
<td>Ministry: lack of awareness, hence weak health policy response; inadequate collaboration with other sectors.</td>
<td>Finance: lack of suitable local micro-credit or other ways to assist with costs of appliances.</td>
<td>Collaboration: Inadequate support/facilitation of inter-sectoral collaboration at national and other levels.</td>
</tr>
<tr>
<td>Participation: lack of opportunities for participation in change.</td>
<td>Research institutions: Relatively low priority as health research issue; limited funding; lack of population surveys of exposure (health risk); exposure assessment difficult in settings where problem is worst (cost, technical expertise required).</td>
<td>Evidence: History of poor projects, together with lack of evidence of successful initiatives, has reduced interest.</td>
<td></td>
</tr>
<tr>
<td>3. Present level of knowledge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community development: Allows participation in needs assessment and planning interventions.</td>
<td>Role: Health sector tends to view role as limited, so this needs to be clarified. Role includes:</td>
<td>Many options currently exist for these sectors, but implementation is mostly patchy and uncoordinated.</td>
<td>National policy: Integrated national policies on household energy, health and development are required, but mostly lacking.</td>
</tr>
<tr>
<td>Poverty reduction: Opportunities for income generation, uptake of credit where available. Note that adoption of interventions (below) includes ability to pay.</td>
<td>• collection and provision of data on health and exposures</td>
<td>Energy supply: Distribution of cleaner fuels (e.g. oil sector); other clean fuels (biogas, gelfuels).</td>
<td>Specific programmes: Some examples of national initiatives, including China (rural stove programme), India (improved stove programme) and Brazil (promotion of gas). In general, few strategic national examples.</td>
</tr>
<tr>
<td>Improved stoves: Adoption of stoves that reduce emissions, save fuel, vent pollution to exterior.</td>
<td>• raising awareness of health effects and need for prevention</td>
<td>Local commercial sector: Artisans (e.g. stoves); distributors and suppliers of fuels and appliances</td>
<td>Poverty reduction: Rural and urban poverty reduction can be expected to</td>
</tr>
<tr>
<td>Cleaner fuels: Use of kerosene, gas, electricity where available.</td>
<td>• provision of education at points of contact with the health system (in clinical or community settings)</td>
<td>Education: School and adult education on health risks, role of community, options for change.</td>
<td></td>
</tr>
<tr>
<td>Research: Tools and methods for obtaining valid information on:</td>
<td>• collaboration with other sectors.</td>
<td>Housing: Integrate environmental</td>
<td></td>
</tr>
<tr>
<td>Role: Health sector tends to view role as limited, so this needs to be clarified. Role includes:</td>
<td>Many options currently exist for these sectors, but implementation is mostly patchy and uncoordinated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• collection and provision of data on health and exposures</td>
<td>Energy supply: Distribution of cleaner fuels (e.g. oil sector); other clean fuels (biogas, gelfuels).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• raising awareness of health effects and need for prevention</td>
<td>Local commercial sector: Artisans (e.g. stoves); distributors and suppliers of fuels and appliances</td>
<td>Education: School and adult education on health risks, role of community, options for change.</td>
<td></td>
</tr>
<tr>
<td>• provision of education at points of contact with the health system (in clinical or community settings)</td>
<td>Research: Tools and methods for obtaining valid information on:</td>
<td>Housing: Integrate environmental</td>
<td></td>
</tr>
<tr>
<td>• collaboration with other sectors.</td>
<td>Many options currently exist for these sectors, but implementation is mostly patchy and uncoordinated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Energy supply: Distribution of cleaner fuels (e.g. oil sector); other clean fuels (biogas, gelfuels).</td>
<td>Local commercial sector: Artisans (e.g. stoves); distributors and suppliers of fuels and appliances</td>
<td>Education: School and adult education on health risks, role of community, options for change.</td>
</tr>
<tr>
<td></td>
<td>Research: Tools and methods for obtaining valid information on:</td>
<td>Many options currently exist for these sectors, but implementation is mostly patchy and uncoordinated.</td>
<td>Housing: Integrate environmental</td>
</tr>
<tr>
<td></td>
<td>Role: Health sector tends to view role as limited, so this needs to be clarified. Role includes:</td>
<td>Many options currently exist for these sectors, but implementation is mostly patchy and uncoordinated.</td>
<td>National policy: Integrated national policies on household energy, health and development are required, but mostly lacking.</td>
</tr>
<tr>
<td>Annex 4: Indoor air pollution (IAP): application of the CAM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The individual, household and community: Sectors other than health institutions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health ministry and other health institutions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sectors: health, forestry, environment, housing, finance, policy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macroeconomic policies: health and finance</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Cost and effectiveness

4.1 What types of intervention are under consideration?

<table>
<thead>
<tr>
<th>Requires combination of (a) new technologies and (b) effective communication with communities, as well as (c) more extensive implementation of existing interventions. New ideas include:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Community awareness, such as training local health workers in best practices, and educational materials.</td>
</tr>
<tr>
<td>- Behavioural interventions, e.g., campaigns to encourage healthy cooking practices.</td>
</tr>
<tr>
<td>- Integrated policy: Increasing financial support for households to adopt cleaner fuels, e.g., subsidies for clean cookstoves.</td>
</tr>
</tbody>
</table>

4.2 Who pays?

- Costs are incurred by households through market mechanisms, as well as through government subsidies and local micro-credit, to reduce exposure of family members.

4.3 Actual cost:

- Costs to households include capital costs (appliances, etc.) and running costs (fuels, maintenance). Wide range of costs from US$5-7 (ceramic stove) to US$150+ for biogas or electric appliances.

4.4 Community perspectives:

- There is a need for more information on how communities and households view the health impacts of IAP, and how they view the benefits of household energy interventions (including employment, environmental protection, etc.). The costs of interventions are not borne by the health sector.

4.5 Cost-benefit:

- Estimates based on stoves in Guatemala and Kenya suggest benefits substantially outweigh costs for overall mortality and ALRI morbidity.

4.6 Cost-effectiveness:

- Estimates for stoves in India indicate $50-100 per DALY saved.

4.7 Research:

- Strengthen evidence and precision of health risk estimates for IAP (including ARI, COPD, TB, LBW, cancer, eye disease); evidence on wider health impacts of household energy; collaboration on systematic monitoring and evaluation.

4.8 Sectoral issues:

- In contrast to the health sector, it is the non-health sector (mainly) that "provides" the interventions. The issue of cost is complex, however, as interventions mostly need to be taken up through market mechanisms if widespread uptake and sustainability are to be achieved. A range of benefits should accrue to the non-health sector, including economic development, environmental protection, etc. These are also benefits for the health sector.

4.9 Integrated policy:

- Increased awareness at national level needs to lead to integrated policy, linked to poverty-reduction efforts. Specific measures to include:
 - Targeted financial support for non-health sector, e.g., foregone income or loss.
 - Targeted financial support for non-health sector, e.g., foregone income or loss.
4.2 How cost effective could future interventions be?

| **Action at community level** has a great deal of potential. Participatory development, particularly involving women, can be very effective in promoting change. Some specific new interventions, such as the Ecostove (Nicaragua) and gafuels (Africa) look promising. But there remains a pressing need for studies that assess the overall effectiveness and sustainability of interventions, covering a range of urban and rural settings. Also needed are impact assessment methods that can be applied more routinely and that are sufficiently flexible to allow for the very variable levels of capacity and information. |
| Some initial estimates of potential reductions in mortality and incidence of specific diseases such as ALRI from lowering IAP are becoming available. These are still based on imprecise estimates of risk, and as yet do not: |
| 1. Integrate wider health impacts of household energy on health, nor |
| 2. Consider the potential of interventions and (crucially) approaches to more effective and sustainable implementation outlined here. |
| **Research:** The health sector should take a lead in ensuring that the evidence for making these assessments is both available and clearly presented. |
| **Research:** Stronger evidence on varied impacts of household energy on health; methods for developing health sector role, with case studies. |
| **Community participation** in planning and evaluation is required. |
| **Research:** More effective mechanisms for inter-sectoral collaboration at various levels. |
| **Research:** Development of new technologies and approaches to implementation, marketing, etc. |
| **Source:** Global Forum for Health Research |

5. Resource flows

| No information is available. | **Collaboration:** More effective mechanisms for inter-sectoral collaboration at various levels. |
| **Research:** Development of new technologies and approaches to implementation, marketing, etc. |
| **Source:** Global Forum for Health Research | **Research:** Systematic reviews of experience to date with components of the above to guide more integrated policy. |

Integrated policy on household energy and the poor has the potential to contribute to national socioeconomic development, particularly if the above measures can contribute to reducing inequalities in health and development in society. This is an important area for further study.
Annex 5
Perinatal and neonatal care in Pakistan: application of the CAM

<table>
<thead>
<tr>
<th>1. Disease burden</th>
<th>The individual, household and community</th>
<th>Health ministry and other health institutions</th>
<th>Sectors other than health</th>
<th>Macroeconomic policies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information on incidence, prevalence, severity and burden of disease for specific areas. Affected age groups.</td>
<td>Awareness and data at the level of direct policy-making bodies (especially provincial and local governments) and health research systems.</td>
<td>Awareness of problem and linkages with other sectors e.g. education, population welfare, etc.</td>
<td>Federal-level information systems and linkages with the Planning Commission and Ministry of Finance.</td>
<td></td>
</tr>
</tbody>
</table>

| 2. Determinants | Socio-behavioural factors affecting susceptibility to disease and resilience to change e.g. maternal empowerment, dietary factors. | Awareness and data at the level of direct policy-making bodies (especially provincial and local governments) and health research systems. | Awareness of problem and linkages with other sectors e.g. education, population welfare, etc. | Federal-level information systems and linkages with the Planning Commission and Ministry of Finance. |

| 3. Present level of knowledge | Information on disease burden and direct link to maternal and newborn health (available from both national and international sources). | Awareness of information at the level of direct policy-making bodies (especially provincial and local governments) and health research systems. | Awareness of problem, its burden and linkages with other sectors e.g. education, population welfare, etc. | Federal-level information systems and linkages with the Planning Commission and Ministry of Finance. |

| 4. Cost and effectiveness (of future or possible Interventions) | Information on costing and effectiveness of interventions at community level, especially from programme settings. | Awareness of cost-effective interventions at the level of direct policy-making bodies (especially provincial and local governments) and health research systems. | Awareness of cost-effective interventions and their synergy or linkages with other sectors e.g. education, population welfare, food and environment agencies. | Federal-level awareness and sharing of information with the Planning Commission and Ministry of Finance. |

| 5. Resource flows | Availability of funding opportunities for key areas, especially at population level. | Availability of research funding opportunities and alignment with research priorities as identified by the Ministry of Health (especially provincial and local governments) and the PMRC. | Availability of research funding opportunities and alignment with research priorities of other sectors e.g. education, population welfare, food and environment agencies. | Availability of research funding opportunities and alignment with research priorities of other sectors e.g. federal-level bodies i.e. Planning Commission and Ministry of Finance. |

Source: Pakistan Medical Research Council
Annex 6
Newborn health research priorities (summary view)

<table>
<thead>
<tr>
<th></th>
<th>The individual, household and community</th>
<th>Health ministry and other health institutions</th>
<th>Sectors other than health</th>
<th>Macroeconomic policies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Disease burden</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2. Determinants</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3. Present level of knowledge</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>4. Cost and effectiveness (of future or possible interventions)</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5. Resource flows</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

1 = Sufficient data available
2 = Some data available
3 = Insufficient data (need for more research)
4 = No information/Critical gap/High-priority research area

Source: Pakistan Medical Research Council
Annex 7

References

