SURVEY OF NONSUSCEPTIBLE NASOPHARYNGEAL S. PNEUMONIAE ISOLATES IN CHILDREN ATTENDING DAY-CARE CENTERS IN BRAZIL

Caritas M. Franco, MD,* Ana Lucia S. Andrade, MD,† João G. Andrade, MD,‡ Simonne Almeida e Silva, MD,¶ C. Renato M. Oliveira, MD,§ Fabiana C. Pimenta, PhD,∥ Juliana Lamaro-Cardoso, PhD,¶ Angela P. Brandão, PhD,¶ Samantha C. G. Almeida, PhD,∥∥ Juan J. Calix, MD,¶ ¶ ¶ Moon H. Nahm, MD,**†† and Maria-Cristina de Cunto Brandileone, PhD∗∗∗

DOI: 10.1097/INF.0b013e3181af7e90
Copyright © 2009 by Lippincott Williams & Wilkins

Supplemental digital content is available for this article. Direct URL(s) are listed in the print article.

Address for correspondence: Ana Lucia S. Andrade, Departamento de Saúde Coletiva, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Rua 235, S. Leste Universitário, CEP 74605-050, Goiânia-GO, Brazil. E-mail: ana@iptsp.ufg.br.

Supported by the Brazilian Council for Research and Development/CNPq (473187/2004–3, 482646/2007–1), the Secretariat of Health of Goiás, the 70 municipal DCCs. The study protocol was approved by the Regional Ethical Committee of the Federal University of Goiás and the Municipal Ethical Committee of Goiânia.

METHODS

A survey of PNSp carriage isolates was conducted between August 2005 and December 2005 in Goiânia (1,201,007 inhabitants) among children between the ages of 2 and 59 months attending 62 day care centers (DCCs) for a minimum of 5 days. The number of children sampled per DCC was proportional to the number of children per DCC. We calculated that 1100 children would be necessary to estimate risks of PNSp carriage with a 95% confidence interval (95% confidence interval [CI]) assuming 20% of PNSp carriage (design effect = 1.5).

A single NP specimen was obtained per child with nasal swabs, placed into Stuart transport medium tubes (Medical Wire, Corsham, United Kingdom) and sent immediately to the Laboratory of Bacteriology of the Federal University of Goiás to be processed according to the WHO recommendations. The NP swabs were plated on a tryptic soy agar containing 5% sheep blood (Difco, Detroit, MI) and 5 µg/mL gentamicin sulfate (Sigma Chemical, St Louis, MO). S. pneumoniae was identified by morphology after Gram’s staining, susceptibility to a 5 µg optochin disk (Cecon, São Paulo, Brazil), and bile solubility testing. Pneumococci were first screened for decreased susceptibility to penicillin (PEN) with a 1 µg oxacillin disk by the disk-diffusion method. Isolates that presented inhibition zones ≤19 mm to oxacillin were tested for minimum inhibitory concentrations (MIC) to PEN, using Etest (AB Biodisk, Solna, Sweden). Susceptibility was also tested for erythromycin, trimethoprim-sulfamethoxazole (SXT), tetracycline, clindamycin, chloramphenicol, levofloxacin, and vancomycin. The breakpoints and MICs were interpreted according to the Clinical and Laboratory Standards Institute guidelines. Breakpoints for PEN were as ≤0.06 µg/mL (susceptible), 0.12 to 1.0 µg/mL (intermediate resistant), and ≥2.0 µg/mL (high resistant). Isolates intermediate resistant or resistant were considered as PNSp. Multidrug-resistant (MDR) S. pneumoniae were defined as isolates with resistance ≥3 antimicrobial classes.

Capsular typing was performed in PNSp isolates and in an equal number of PEN susceptible (PSSp) isolates randomly selected and matched to DCCs. Serotyping was performed by Quellung reactions using standard antisera obtained from the Statens Serum Institut (Copenhagen, Denmark). To confirm the serotypes of non-(sero)typeable pneumococci (NTPn), they along with a sample of 26 PNSp isolates expressing serotype 14 were retested with a multiplexed inhibition immunoassay for capsular polysaccharides using monoclonal antibodies specific for the capsule types and sets of latex bead mixture. Proportion of coverage by PCV7 (serotypes 4, 6B, 9V, 14, 18C, 19F, 23F), PCV10 (PCV7 plus 1, 5, 7F) and PCV13 (PCV10 plus 3, 6A, 19A) were calculated by proportion of serotypes included in the vaccines of all serotypes...
detected in colonized children. Risks factors for PNSp carriage were determined by logistic regression with results presented as odds ratios (OR) and 95% CI and statistic significance set as 0.05.

RESULTS

A total of 1192 children were recruited for the study, which represented 32% of 3720 children younger than 5 years old attending DCCs. The median age of the participants was 39 months, and more than half (54.1%) were male. NP carriage rate was 57.6% (686 out of 1192). Among 686 isolates, 178 (25.9%) were PNSp. Serotyping results for 166 PNSp and also for 166 PSSp isolates are shown in Table, Supplemental Digital Content 1, http://links.lww.com/INF/A296. Serotype 14 was highly prevalent among PNSp (53%) isolates and accounted for 85.7% of the 42 highly resistant isolates. PSSp isolates displayed diverse serotypes including pneumococci expressing 46 different serotypes. Among 35 isolates initially tested as NTPn by Quellung reaction, 20 nonsusceptible and 4 susceptible isolates were confirmed to be NTPn by multibead assay. About 62.9% (22/35) of NTPn were PNSp isolates. Overall, there was significantly (P < 0.001) higher serotype coverage for the PCV 13-valent vaccine (72%; 95% CI: 67.0–76.6) compared with PCV7 (58.4%; 95% CI: 53.1–63.6) and to PCV 10-valent (59.3%; 95% CI: 54.0–64.5) vaccines. Coverage by PNSp was 77.1% for both, PCV7 and PCV10, and 83.1% for PCV13. Results for 141 PNSp isolates tested with antimicrobials other than PEN show high rates of resistance to SXT (Table 1, online only). MDR was found in 24.8% of the isolates. A total of 63.6% of NTPn were MDR. All serotypes were susceptible to levofloxacin and vancomycin. The median of the MIC values to PEN was higher for nonsusceptible erythromycin isolates when compared with susceptible erythromycin isolates. The comparison between 178 PNSp and 508 PSSp isolates, found that significant factors independently associated with the risk of carrying PNSp were age ≤23 months (28.1% vs. 18.1%; OR: 1.79; 95% CI: 1.19–2.70), hospitalization during the previous 3 months (9.6% vs. 4.1%; OR: 2.19; 95% CI: 1.10–4.35), and recurrent acute otitis media (6.2% vs. 2.6%; OR: 2.89; 95% CI: 1.24–6.67). Having older siblings was identified as a protective factor for carriage of PNSp (59% vs. 67.9%; OR: 0.66; 95% CI: 0.46–0.95).

DISCUSSION

To our knowledge, this is the first published survey of pneumococcal NP carriage in Brazilian DCCs that sampled large enough numbers of attendees to represent the entire population, instead of a convenient sample of 1 or a few centers. Our data suggest that recurrent otitis media (3 episodes diagnosed in 6 months) may favor NP colonization by PNSp. Because DCCs may be a significant distribution site of antibiotic-resistant pneumococci to the community, we wonder if attendees with a history of recurrent acute otitis media might contribute in the spread of PNSp strains to the community.

It is interesting to note that 35 (10.5%) of 332 serotyped isolates could not be assigned a capsular type by Quellung reaction as well as the multibead assay. This percentage of NTPn carriage was higher than those observed in children in The Gambia (2.4%)8 and in previous studies in Brazil.4 The levels of MDR NTPn (63%) were higher than those observed in attendees in Portugal2 and in children of Israel.10 Little is known about the genetic, epidemiology, and the true role of NTPn in NP carriage.9 In a recent study of 40 NTP isolates from Gambian children, cpsA gene was found only in 31 isolates.3 Our preliminary studies suggest that most NTPn have cpsA gene and some even have cps14H gene, which is specific for serotype 14 capsule gene locus. Thus, the NTPn isolates with cps14H gene presumably have nonfunctional serotype 14 capsule gene locus. The PEN resistance was slightly higher in this study than the levels we have previously detected in carriage isolates in healthy children and in children at the time of hospital admission.4 The high rate resistance to both, PEN and SXT, as well the low rate of resistance to erythromycin are in accordance with previous studies in Brazil.11 PNSp serotype 14 was the major type isolated in our study and has been the most common serotype associated with erythromycin resistance in several reports, including Brazil.

Serotype 19A, which is an important serotype causing invasive pneumococcal disease in Brazil,12 was among the top 3 ranked serotypes and fifth PNSp serotype in our study. In a recent pneumococcal carriage in our country, serotype 19A also appeared as a prevalent serotype. These findings deserve consideration as a baseline data before the introduction of the PCV into the Brazilian universal immunization program. As expected, serotypes 1 and 5, as well 3 and 7, were not isolated in nasopharynx of children, but they are among the most common invasive pneumococcal disease serotypes in Brazil.12 Our data showed that 58% of the serotypes colonizing the nasopharynx of children were those present in the PCV7, but a significantly greater proportion of 72% would be covered by the PCV13, mainly because of the high prevalence of non-PCV7 serotypes 6A and 19A. Therefore, investigational vaccines containing these serotypes would increase significantly the coverage of NP carriage serotypes in our country.

REFERENCES

